
FastXML: A Fast, Accurate and Stable Tree-classifier for
eXtreme Multi-label Learning

Yashoteja Prabhu
Indian Institute of Technology - Delhi
yashoteja.prabhu@gmail.com

Manik Varma
Microsoft Research

manik@microsoft.com

ABSTRACT
The objective in extreme multi-label classification is to learn
a classifier that can automatically tag a data point with the
most relevant subset of labels from a large label set. Extreme
multi-label classification is an important research problem
since not only does it enable the tackling of applications with
many labels but it also allows the reformulation of ranking
problems with certain advantages over existing formulations.

Our objective, in this paper, is to develop an extreme
multi-label classifier that is faster to train and more accu-
rate at prediction than the state-of-the-art Multi-label Ran-
dom Forest (MLRF) algorithm [2] and the Label Partition-
ing for Sub-linear Ranking (LPSR) algorithm [35]. MLRF
and LPSR learn a hierarchy to deal with the large num-
ber of labels but optimize task independent measures, such
as the Gini index or clustering error, in order to learn the
hierarchy. Our proposed FastXML algorithm achieves sig-
nificantly higher accuracies by directly optimizing an nDCG
based ranking loss function. We also develop an alternating
minimization algorithm for efficiently optimizing the pro-
posed formulation. Experiments reveal that FastXML can
be trained on problems with more than a million labels on
a standard desktop in eight hours using a single core and in
an hour using multiple cores.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Performance, Machine Learning, Optimization

Keywords
Multi-label Learning; Ranking; Extreme Classification

1. INTRODUCTION
The objective in extreme multi-label classification is to

learn a classifier that can automatically tag a data point

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD’14, August 24–27, 2014, New York, NY, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2956-9/14/08 ...$15.00.
http://dx.doi.org/10.1145/2623330.2623651.

with the most relevant subset of labels from a large label
set. For instance, there are more than a million categories
on Wikipedia and one might wish to build a classifier that
annotates a novel web page with the subset of most relevant
Wikipedia categories. It should be emphasized that multi-
label learning is distinct from multi-class classification which
aims to predict a single mutually exclusive label.

Extreme classification is an important research problem
not just because modern day applications have many cat-
egories but also because it allows the reformulation of core
learning problems such as recommendation and ranking. For
instance, [2] treated search engine queries as labels and built
an extreme classifier which, given a novel web page, returned
a ranking of queries in decreasing order of relevance. Sim-
ilarly, [35] treated YouTube videos as distinct labels in an
extreme classifier so as to recommend a ranked list of videos
to users. Both methods provided a fresh way of thinking
about ranking and recommendation problems that led to
significant improvements over the state-of-the-art.

Extreme classification is also a challenging research prob-
lem as one needs to simultaneously deal with a large num-
ber of labels, dimensions and training points. An obvious
baseline is provided by the 1-vs-All technique where an inde-
pendent classifier is learnt per label. Such a baseline has at
least two major limitations. First, training millions of high
dimensional classifiers might be computationally expensive.
Second, the cost of prediction might be high since all the
classifiers would need to be evaluated every time a predic-
tion needed to be made. These problems could be amelio-
rated if a label hierarchy was provided. Unfortunately, such
a hierarchy is unavailable in many applications [2, 35].

State-of-the-art methods therefore learn a hierarchy from
training data as follows: The root node is initialized to con-
tain the entire label set. A node partitioning formulation
is then optimized to determine which labels should be as-
signed to the left child and which to the right. Nodes are
recursively partitioned till each leaf contains only a small
number of labels. During prediction, a novel data point is
passed down the tree until it reaches a leaf node. A base
multi-label classifier of choice can then be applied to the
data point focusing exclusively on the leaf node label distri-
bution. This leads to prediction costs that are sub-linear or
even logarithmic if the tree is balanced.

Tree based methods can often outperform the 1-vs-All
baseline in terms of prediction accuracy at a fraction of
the prediction cost. However, such methods can also be
expensive to train. In particular, the Label Partitioning
by Sublinear Ranking (LPSR) algorithm of [35] can have

even higher training costs than the 1-vs-All baseline since it
needs to learn the hierarchy in addition to the base classifier.
Similarly, the Multi-label Random Forest (MLRF) approach
of [2] required a cluster of a thousand nodes as random for-
est training was found to be expensive in high dimensional
spaces. Such expensive approaches not only increase the
cost of deploying extreme classification models and the cost
of daily experimentation but also put such models beyond
the reach of most practitioners.

Our objective, in this paper, is to tackle this problem and
build a tree based extreme multi-label classifier, referred to
as FastXML, that is faster to train as well as more accurate
than the state-of-the-art MLRF and LPSR. Our key techni-
cal contributions are a novel node partitioning formulation
and an algorithm for its efficient optimization. In terms
of training time, FastXML can be significantly faster than
MLRF since the proposed node partitioning formulation can
be optimized more efficiently than the entropy or Gini in-
dex based formulations in random forests. At the same time,
FastXML can be faster to train than LPSR which has to first
learn computationally expensive base classifiers for accurate
prediction. In terms of prediction accuracy, almost all ex-
treme classification applications deal with scenarios where
the number of relevant positive labels for a data point is
orders of magnitude smaller than the number of irrelevant
negative ones. Prediction accuracy is therefore not measured
using traditional multi-label metrics, such as the Hamming
loss, which give equal weightage to all labels whether posi-
tive or negative. Instead, most applications prefer employ-
ing ranking based measures such as precision at k which
focuses exclusively on the positive labels by counting the
number of correct predictions in the top k positive predic-
tions. FastXML’s proposed node partitioning formulation
therefore directly optimizes a rank sensitive loss function
which can lead to more accurate predictions over MLRF’s
Gini index or LPSR’s clustering error.

Experiments indicated that FastXML could be significantly
more accurate at prediction (by as much as 5% in some
cases) on benchmark data sets with thousands of labels where
accurate models for MLRF, LPSR and the 1-vs-All baseline
could be learnt. Furthermore, FastXML could efficiently
scale to problems involving a million labels where accurate
training of MLRF, LPSR and 1-vs-ALL models would re-
quire a very large cluster. For instance, using a single core on
a standard desktop, a single FastXML tree could be trained
in under 10 minutes on a data set with about 4 M training
points, 160 K features and 1 M labels. The entire ensem-
ble could be trained in 8 hours using a single core and in 1
hour using multiple cores. MLRF and 1-vs-All could not be
trained on such extreme multi-label data sets on a standard
desktop. LPSR training could be made tractable by replac-
ing the computationally expensive 1-vs-All base classifier by
the cheaper Näıve Bayes but then its classification accuracy
was found to lag behind by more than 20% on data sets such
as Wikipedia.

Our contributions are: (a) We formulate a novel node par-
titioning objective which directly optimizes an nDCG based
ranking loss and which implicitly learns balanced partitions;
(b) We propose an efficient optimization algorithm for the
novel formulation; and (c) we combine these in a tree al-
gorithm which can train on problems with a million labels
on a standard desktop while increasing prediction accuracy.
Code for FastXML can be downloaded by clicking here.

2. RELATED WORK
There has been much recent progress in extreme multi-

label classification [2,4,8,10,12,15,19,20,22,29,34–36,38] and
most approaches are either based on trees or on embeddings.

To clarify the discussion, it is assumed that the training
set can be represented as {(xi,yi)Ni=1} with D dimensional

real-valued feature vectors xi ∈ RD with sparsity O(D̂),
and L dimensional binary label vectors yi ∈ {0, 1}L with
yil = 1 if label l is relevant for point i and 0 otherwise. If
one further assumes that the cost of training a linear binary
classifier is O(ND̂), then the training cost of the linear 1-vs-

All baseline is O(LND̂) and the prediction cost is O(LD̂).
This is infeasible when L and N are in the range 105 −
106. One can mitigate the training cost by sub-sampling
the negative class for each binary classifier but the prediction
cost would still be high.

Embedding methods [4,8,10,12,15,19,20,22,29,34,36,38]
exploit label correlations and sparsity to compress the num-
ber of labels from L to L̂. A low-dimensional embedding of
the label space is found typically through a linear projection
ŷ = Py where P is a L̂×L projection matrix. The 1-vs-All
strategy can now be applied and the cost of training and
prediction in the compressed space reduces to O(L̂ND̂) and

O(L̂D̂) respectively. The compressed label predictions also

need to be uncompressed at an additional cost of O(L̂L)
or higher. Methods mainly differ in the choice of com-
pression and decompression techniques such as compressed
sensing [19, 22], Bloom filters [12], SVD [29], landmark la-
bels [4, 8], output codes [38], etc. An interesting variant
can be obtained by compressing the features x̂ = Rx to the
same L̂ dimensional space as the labels [34]. Predictions can
then be efficiently made in the embedding space via nearest
neighbour techniques and no decompression is required.

Embedding methods have many advantages including sim-
plicity, ease of implementation, strong theoretical founda-
tions, the ability to handle label correlations, the ability to
adapt to online and incremental scenarios, etc. Unfortu-
nately, embedding methods can also pay a heavy price in
terms of prediction accuracy due to the loss of information
during the compression phase. For instance, none of the
embedding methods developed so far have been able to con-
sistently outperform the 1-vs-All baseline when L̂ ≈ log(L).

Tree methods that learn a hierarchy enjoy many of the
same advantages as the embedding methods. In addition,
they can outperform the 1-vs-All baseline even when the
prediction costs are O(D̂ logL). Our primary comparison is
therefore with tree-based methods.

The Label Partitioning by Sub-linear Ranking (LPSR)
method of [35] focussed on reducing the prediction time by
learning a hierarchy over a base classifier or ranker. First, a
base multi-label classifier was learnt for the entire label set.
This step governs the overall training complexity and pre-
diction accuracy. Generative classifiers such as Näıve Bayes
are quick to train but have low accuracy whereas discrimina-
tive classifiers such as 1-vs-All with linear SVMs [18], deep
nets or Wsabie [34] are expensive to train but have higher
accuracy. Next, a hierarchy was learnt in terms of a single
binary tree. Nodes in the tree were grown by partitioning
the node’s data points into 2 clusters, corresponding to the
left and the right child, using a variant of k-means over the
feature vectors. The tree was grown until each leaf node had
a small number of data points and corresponding labels. Fi-

http://research.microsoft.com/~manik/code/FastXML/download.html

nally, a relaxed integer program was optimized at each leaf
node via gradient descent to activate a subset of the labels
present at the node. During prediction, a novel point was
passed down the tree until it reached a leaf node. Predic-
tions were then made using the base classifier restricted to
the set of active leaf node labels.

The Multi-label Random Forest (MLRF) approach of [2]
did not need to learn a base classifier. Instead, an ensemble
of randomized trees was learnt. Nodes were partitioned into
a left and a right child by brute force optimization of a multi-
label variant of the Gini index defined over the set of positive
labels in the node. Trees were grown until each leaf node
had only a few labels present. During testing, a novel point
was passed down each tree and predictions were made by
aggregating all the leaf node label distributions.

Both LPSR and MLRF have high training costs. LPSR
needs to train an accurate base multi-label classifier, perform
hierarchical k-means clustering and solve a label assignment
problem at each leaf node. MLRF needs to learn an ensem-
ble of trees where the cost of growing each node is high. In
particular, while training in high dimensional spaces, ran-
dom forests need to sample a large number of features at
each node in order to achieve a good quality, balanced split
(extremely random trees [17] and other variants do not work
in extreme classification scenarios as they learn imbalanced
splits). Furthermore, brute force optimization of the Gini
index or entropy over each feature is expensive when there
are a large number of training points and labels. All in all,
accurate LPSR and MLRF training can require large clus-
ters – with up to a thousand nodes in the case of MLRF.

Finally, care should be taken to note that our objective
of learning a multi-label hierarchy is very different from the
objective of learning a multi-class hierarchy [5, 11, 13, 16] or
exploiting a pre-existing multi-label hierarchy [7, 9, 27].

3. FASTXML
Our primary objective, in developing FastXML, is to en-

able training on a single desktop or a small cluster. At the
same time, we aim to achieve greater prediction accuracy
by optimizing a more suitable rank sensitive loss function
as compared to MLRF’s Gini index and LPSR’s clustering
error. We start this Section by presenting an overview of the
FastXML algorithm, then go into the details of optimizing
a loss function to learn a node partition and finally analyze
FastXML’s cost of prediction.

3.1 FastXML overview
FastXML learns a hierarchy, not over the label space as

is traditionally done in the multi-class setting [5,13,16], but
rather over the feature space. The intuition is similar to
LPSR and MLRF’s and comes from the observation that
only a small number of labels are present, or active, in each
region of feature space. Efficient prediction can therefore
be carried out by determining the region in which a novel
point lies by traversing the learnt feature space hierarchy
and then focusing exclusively on the set of labels active in
the region. Like MLRF, and unlike LPSR, FastXML de-
fines the set of labels active in a region to be the union of
the labels of all training points present in that region. This
speeds up training as FastXML does not need to solve the
label assignment integer program in each region. Further-
more, like MLRF, and unlike LPSR, FastXML learns an en-
semble of trees and does not need to rely on base classifiers.

Algorithm 1 FastXML({xi,yi}N
i=1, T)

parallel-for i = 1, .., T do
nroot ← new node
nroot.Id← {1, .., N} # Root contains all instances

grow-node-recursive(nroot)
Ti ← new tree
Ti.root← nroot

end parallel-for
return T1, .., TT

procedure grow-node-recursive(n)
if |n.Id| ≤ MaxLeaf then # Make n a leaf

n.P←process-leaf({xi,yi}Ni=1, n)
else # Split node and grow child nodes recursively

{n.w, n.left child, n.right child}
← split-node({xi,yi}Ni=1, n)

grow-node-recursive(n.left child)
grow-node-recursive(n.right child)

end if
end procedure

procedure process-leaf({xi,yi}Ni=1, n)

P← top-k
(∑

i∈n.Id yi

|n.Id|

)
return P # Return scores for top k labels

end procedure

Predictions are made by returning the ranked list of most
frequently occurring active labels in all the leaf nodes in the
ensemble containing the novel point. Algorithms 1 and 3
present pseudo-code for FastXML training and prediction
respectively.

3.2 Learning to partition a node
Training FastXML consists of recursively partitioning a

parent’s feature space between its children. Such a node
partition should ideally be learnt by optimizing a global mea-
sure of performance such as the ranking predictions induced
by the leaf nodes, Unfortunately, optimizing global measures
can be expensive as all nodes in the tree would need to be
learnt jointly [21]. Existing approaches therefore optimize
local measures of performance which depend solely on pre-
dictions made by the current node being partitioned. This
allows the hierarchy to be learnt node by node starting from
the root and going down to the leaves and is more efficient
than learning all the nodes jointly.

MLRF and LPSR optimize the Gini index and clustering
error as their local measure of performance. Unfortunately,
neither measure is particularly well suited for ranking or
extreme multi-label applications where correctly predicting
the few positive relevant labels is much more important than
predicting the vast number of irrelevant ones.

FastXML therefore proposes to learn the hierarchy by
directly optimizing a ranking loss function. In particular,
it optimizes the normalized Discounted Cumulative Gain
(nDCG) [33]. This results in learning superior partitions
due to two main reasons. First, nDCG is a measure which
is sensitive to both ranking and relevance and therefore en-
sures that the relevant positive labels are predicted with
ranks that are as high as possible. This cannot be guaran-
teed by rank insensitive measures such as the Gini index or
the clustering error. Second, by being rank sensitive, nDCG

Algorithm 2 SPLIT-NODE({xi,yi}N
i=1, n)

Id← n.Id
δi[0] ∼ {−1, 1}, ∀i ∈ Id # Random coin tosses

w[0]← 0, t← 0, tw ← 0,W0 ← 0 # Various counters

repeat

r±[t+ 1]← rankL

(∑
i∈Id

1
2
(1± δi[t])IL(yi)yi

)
for i ∈ Id do

v± ← Cδ(±1) log(1 + e∓w[t]>xi)

−CrIL(yi)
L∑
l=1

(
y
ir
±
l

[t+1]

log(1+l)

)
Refer to (5)

if v+ = v− then
δi[t+ 1] = δi[t]

else
δi[t+ 1] = sign(v− − v+)

end if
end for
if δ[t+ 1] = δ[t] then # Update w

w[t+1]←argmin
w
‖w‖1+Cδ(δi[t])

∑
i∈Id

log(1+e−δi[t]w>xi)

Wtw+1 ← t+ 1 # Store time step of the update

tw ← tw + 1 # We made one more update to w

else
w[t+ 1]← w[t]

end if
t← t+ 1

until δ[Wtw] = δ[Wtw−1] # Convergence

n+ ← new node, n− ← new node
n+.Id←

{
i ∈ Id : w[t]>xi > 0

}
n−.Id←

{
i ∈ Id : w[t]>xi ≤ 0

}
return w[t], n+, n−

can be optimized across all L labels at the current node
thereby ensuring that the local optimization is not myopic.

We stick to the notation introduced in the previous Sec-
tion. it is assumed that the training set can be represented as
{(xi,yi)Ni=1} with D dimensional real-valued feature vectors
xi ∈ RD and L dimensional binary label vectors yi ∈ {0, 1}L
with yil = 1 if label l is relevant for point i and 0 otherwise.
Permutation indices idesc

1 , . . . , idesc
L that sort a real-valued

vector y ∈ RL in descending order are defined such that if
j > k then yidesc

j
≥ yidesc

k
. The rankk(y) operator, which

returns the indices of the k largest elements of y ranked in
descending order (with ties broken randomly), can then be
defined as

rankk(y) = [idesc
1 , . . . , idesc

k]> (1)

Let Π(1, L) denote the set of all permutations of {1, 2, . . . , L}.
The Discounted Cumulative Gain (DCG) at k of a ranking
r ∈ Π(1, L) given a ground truth label vector y with binary
levels of relevance is

LDCG@k(r,y) =

k∑
l=1

yrl
log(1 + l)

(2)

Note that the log(1 + l) term ensures that it is beneficial
to predict the positive labels with high ranks. Thus, unlike
precision (which would have been obtained had the log(1+l)
term been absent), DCG is sensitive to both the ranking
and the relevance of predictions. The normalized DCG, or

Algorithm 3 PREDICT({T1, ..TT },x)

for i = 1, .., T do
n← Ti.root
while n is not a leaf do

w← n.w
if w>x > 0 then

n← n.left child
else

n← n.right child
end if

end while
Pleaf
i (x)← n.P

end for
r(x) = rankk

(
1
T

∑T
i=1 Pleaf

i (x)
)

return r(x)

nDCG, is then defined as

LnDCG@k(r,y) = Ik(y)

k∑
l=1

yrl
log(1 + l)

(3)

where Ik(y) =
1∑min(k,1>y)

l=1
1

log(1+l)

(4)

where Ik(y) is the inverse of the DCG@k of the ideal ranking
for y obtained by predicting the ranks of all of y’s positive
labels to be higher than any of its negative ones. This nor-
malizes LnDCG@k to lie between 0 and 1 with larger values
being better and ensures that nDCG can be used to com-
pare rankings across label vectors with different numbers of
positive labels.

FastXML partitions the current node’s feature space by
learning a linear separator w such that

min ‖w‖1 +
∑
i

Cδ(δi) log(1 + e−δiw
>xi)

− Cr
∑
i

1
2
(1 + δi)LnDCG@L(r+,yi)

− Cr
∑
i

1
2
(1− δi)LnDCG@L(r−,yi)

w.r.t. w ∈ RD, δ ∈ {−1,+1}L, r+, r− ∈ Π(1, L)

(5)

where i indexes all the training points present at the node
being partitioned, δi ∈ {−1,+1} indicates whether point i
was assigned to the negative or positive partition and r+ and
r− represent the predicted label rankings for the positive and
negative partition respectively. Cδ and Cr are user defined
parameters which determine the relative importance of the
three terms.

The first term in (5) is an `1 regularizer on w which en-
sures that a sparse linear separator is used to define the
partition. Given a novel point x, the FastXML trees can
therefore be traversed efficiently during prediction depend-
ing on the sign of w>x at each node. The second term is the
log loss of δiw

>xi. This term couples δ and w as the op-
timal solution of this term alone is δ∗i = sign(w∗>xi). This
makes it likely that points assigned to the positive (nega-
tive) partition, i.e. points for which δi = +1 (δi = −1), will
have positive (negative) values of w>xi. Cδ is relaxed to
be a function of δi so as to allow different misclassification
penalties for the positive and negative points. The third and
fourth term in (5) maximize the nDCG@L of the rankings

predicted for the positive and negative partitions, r+ and
r− respectively, given the ground truth label vectors yi as-
signed to these partitions. These terms couple r± to δ and
thus to w. As discussed, maximizing nDCG makes it likely
that the relevant positive labels for each point are predicted
with ranks as high as possible. As a result, points within
a partition are likely to have similar labels whereas points
across partitions are likely to have different labels.

Furthermore, it is beneficial to maximize nDCG@L at
each node even though the ultimate leaf node rankings will
be evaluated at k � L. This leads to non-myopic decisions
at the root and internal nodes. For example, optimizing
nDCG at k = 5 at the root node of the Wikipedia data
set would be equivalent to finding a separator such that all
the hundreds of thousands of Wikipedia articles assigned to
the positive partition could be accurately labeled with just
the five most frequently occurring Wikipedia categories in
the positive partition and similarly for the negative parti-
tion. Clearly this will not lead to good results at the root
node and superior partitions can be learnt by considering
all the Wikipedia categories rather than just the top five.
Of course, as already pointed out, rank insensitive measures
such as precision cannot be optimized at k = L as they be-
come more and more uninformative with increasing k and
Lprecision@L(r±,yi) = 0 for all points irrespective of the

partitioning.
It is also worth noting that (5) allows a label to be as-

signed to both partitions if some of the points containing
the label are assigned to the positive partition and some to
the negative. This makes the FastXML trees somewhat ro-
bust as the child nodes can potentially recover from mistakes
made by the parents [2, 13,16,35].

Finally, note that δ and r± were deliberately chosen to be
independent variables for efficient optimization rather than
functions dependent on w. In particular, (5) could have been
formulated as an optimization problem in just w by discard-
ing the log loss term and defining δi(w) = sign(w>xi) and
r±(w) = rankL

(∑
i

1
2
(1± δi(w))IL(yi)yi

)
. Such a formu-

lation would also have been natural but intractable at scale.
Direct optimization via efficient techniques such as stochas-
tic sub-gradient descent would not be possible due to the
sharp discontinuities in δ(w) and r±(w). Furthermore, up-
dates to w would necessitate expensive updates to δ and
r±. We therefore decouple δ and r from w by treating them
as variables for efficient optimization but then couple their
optimal values through the objective function. We develop
the optimization algorithm for (5) in Section 4.

3.3 Prediction
The objective function defined in (5) can be optimized

efficiently and can lead to accurate predictions. A good
objective function should, in addition, also lead to balanced
partitions in order to ensure efficient prediction.

Given a novel point x ∈ RD, FastXML’s top ranked k
predictions are given by

r(x) = rankk

(
1

T

T∑
t=1

Pleaf
t (x)

)
(6)

where T is the number of trees in the FastXML ensemble
and Pleaf

t (x) ∝
∑
i∈Sleaf

t (x)
yi and Sleaf

t (x) are the label

distribution and set of points respectively of the leaf node
containing x in tree t. The average cost of prediction is up-

per bounded by O(TDH + T L̂ + L̂ log L̂) where H is the
average length of the path traversed by x in order to reach
the leaf nodes in the T trees and L̂ is the number of non-
zero elements in the vector

∑T
t=1 Pleaf

t (x). The cost is dom-

inated by O(TDH) as L̂ � DH. If the FastXML trees are
balanced then H = logN ≈ logL and the overall cost of
prediction becomes O(TD logL) which is logarithmic in the
total number of labels.

One might therefore be tempted to add a balancing term
to (5) so as to get H as close to logN as possible. How-
ever, this comes at the cost of reduced prediction accuracy
as the objective function trades-off accuracy for balance. As
it empirically turns out, our proposed nDCG based objec-
tive function learns highly balanced trees and a balancing
term does not need to be added to (5). Thus, FastXML’s
predictions can be made accurately in logarithmic time.

4. OPTIMIZING FASTXML
It is well recognized in the learning to rank literature that

nDCG is a difficult function to optimize [25,26,31,32] since it
is sharply discontinuous with respect to w and hence stan-
dard stochastic sub-gradient descent techniques cannot be
applied. FastXML therefore employs an alternate strategy
and optimizes (5) using an iterative alternating minimiza-
tion algorithm. The algorithm is initialized by setting w = 0
and δi to be −1 or +1 uniformly at random. Each iteration,
then, consists of taking three steps. First, r+ and r− are op-
timized while keeping w and δ fixed. This step determines
the ranked list of labels that will be predicted by the positive
and negative partitions respectively. Second, δ is optimized
while keeping w and r± fixed. This step assigns training
points in the node to the positive or negative partition. The
third step of optimizing w while keeping δ and r± fixed is
taken only if the first two steps did not lead to a decrease
in the objective function. This is done to speed up training
since optimizing with respect to δ and r± takes only seconds
while optimizing with respect to w can take minutes. This
is the primary reason why (5) was formulated as a function
of w, δ and r± rather than just w. The algorithm termi-
nates when r±, δ and w do not change from one iteration to
the next. We prove that the objective decreases strictly in
each iteration and that the proposed algorithm terminates
in a finite number of iterations. In practice, it was observed
on all data sets that the algorithm made rapid progress and
yielded state-of-the-art results as soon as a single update to
w had been made. We now detail the steps in each iteration.

4.1 Optimizing with respect to r±

Given w and δ, the first step in each iteration is to find
the optimal rankings r+ and r− that will be predicted by
the positive and negative partition respectively. Fixing w
and δ simplifies (5) to

max
r±∈Π(1,L)

Cr
∑
i

1
2
(1 + δi)LnDCG@L(r+,yi)

+ Cr
∑
i

1
2
(1− δi)LnDCG@L(r−,yi) (7)

which can be compactly expressed as two independent opti-
mization problems

max
r±∈Π(1,L)

∑
i:δi=±1

IL(yi)

L∑
l=1

y
ir±

l

log(1 + l)
(8)

≡ max
r±∈Π(1,L)

L∑
l=1

∑
i:δi=±1

IL(yi)yil

log(1 + r±l)
(9)

≡ max
r±∈Π(1,L)

 ∑
i:δi=±1

IL(yi)yi

> d± (10)

where d± is an L-vector such that d±l = 1/ log(1 + r±l).
Since r+ and r− are permutations of 1, 2, . . . , L it is clear
that (10) will be maximized if r±l is chosen as the index of

the lth largest value in the vector
∑
i:δi=±1 IL(yi)yi. Thus

r±
∗

= rankL

 ∑
i:δi=±1

IL(yi)yi

 . (11)

Note that the optimal values of r± can be computed effi-
ciently in time O(n logL + L̂ log L̂) where n is the number

of training points present in the node being partitioned, L̂
is the sparsity of the vector

∑
i IL(yi)yi and it is assumed

that yi is logL-sparse.

4.2 Optimizing with respect to δ
The next step in an iteration is to optimize (5) with re-

spect to δ while keeping w and r± fixed. This reduces to

min
δ∈{−1,+1}L

∑
i

Cδ(δi) log(1 + e−δiw
>xi)

− Cr
∑
i

1
2
(1 + δi)LnDCG@L(r+,yi)

− Cr
∑
i

1
2
(1− δi)LnDCG@L(r−,yi)

(12)

which decomposes over i. Thus, each δi can be optimized
independently by seeing whether (12) is optimized by δ∗i =
+1 or −1. This yields

δ∗i = sign(v−i − v
+
i) where (13)

v±i = Cδ(±1) log(1 + e∓w>xi)− CrIL(yi)

L∑
l=1

y
ir±

l

log(1 + l)

The time complexity of obtaining δ∗ is O(nD̂+ n logL) as-

suming that the feature vectors are D̂-sparse and the label
vectors are logL-sparse. This reduces to O(n logL) since
w = 0 in the first iteration and w>xi can be cached for all
points in subsequent updates of w.

4.3 Optimizing with respect to w
The final step of optimizing (5) with respect to w while

keeping δ and r± fixed is carried out only if the first two
steps did not make any progress in decreasing the objective
function. This can be efficiently determined in time O(n)
by checking that δ has remained unchanged. Optimizing (5)
with respect to w while keeping δ and r± fixed is equiva-
lent to solving the standard `1 regularized logistic regression
problem with the labels given by δ

min
w∈RD

‖w‖1 +
∑
i

Cδ(δi) log(1 + e−δiw
>xi) (14)

This problem has been extensively studied in the litera-
ture [3,24,37]. FastXML optimizes (14) using the newGLM-
NET algorithm [37] as implemented in the Liblinear pack-
age [14]. No tuning of the learning rate parameter is re-
quired since (14) is optimized in the dual. The algorithm

is terminated after 10 passes over the training set in case it
hasn’t converged already. The overall time complexity of the
method is O(nD̂) where n is the number of training points

in the node being partitioned and D̂ is the average number
of non-zero entries in a feature vector. This is the most time
consuming of the three steps.

4.4 Finite termination
The formulation in (5) is non-convex, non-smooth and

has a mix of discrete and continuous variables. Further-
more, even the sub-problems obtained by optimizing with
respect to only one block of variables might not be convex or
smooth. It is well recognized that alternating minimization
based techniques can fail to converge for such hard problems
in general [6]. However, in our case, it is straightforward to
show that FastXML’s alternating minimization algorithm
for optimizing (5) will not oscillate and will converge in a
finite number of iterations.

Theorem 1. Suppose Algorithm 2 has not yet terminated
and let W = 〈W1,W2, . . . ,Wi, . . . 〉 be the sequence of iter-
ations at which w is updated. Let Wi = W − Wi be the
sequence obtained by removing Wi from W. Furthermore,
let Wi ≤ t < Wi+1. Then (a) δ[Wi] /∈ {δ[Wj]|Wj ∈ Wi};
and (b) δ[t] /∈ {δ[j]|Wi ≤ j 6= t <Wi+1}.

Proof. Let the objective value in (5), after iteration i, be
O[i]. The individual sub-problems (10,12,14), that comprise
a single iteration of 2, are all minimization problems, which
minimize (5) w.r.t a single block of variables, and hence can
never increase the objective value. In addition, algorithm
2 also ensures that any change in δ is accompanied by a
non-zero decrease in the objective.

(a) Let Wi be the iteration at which w is updated for
the ith time. The algorithm ensures that, when δ = δ[Wi],
w[Wi] is the minimizer of (14), and r±[Wi] is the minimizer
of (10), which together imply that O[Wi] is the unique min-
imum value of (5) when optimized over w, r±, while fixing
δ = δ[Wi].
Hence, for a given Wi and a Wj ∈ Wi

(δ[Wi] = δ[Wj]) =⇒ (O[Wi] = O[Wj]) (15)

Without loss of generality, let Wi < Wj . Since by as-
sumption, the algorithm has not yet terminated, δ[Wi] 6=
δ[W(i+1)]. But, since there has been an update to δ, O[Wi] >
O[W(i+1)] ≥ O[Wj]. This, combined with (15) gives us
δ[Wi] 6= δ[Wj].

(b) Let u ∈ {j : Wi ≤ j 6= t ≤ Wi+1}. Without loss
of generality, assume t < u. Since we are between two w
updates, w[t] = w[u]. If δ[t] = δ[u], then using w[t] = w[u],
we essentially solve the same optimization w.r.t r± and δ
in steps t + 1 and u + 1. Hence, O[t+ 1] = O[u+ 1]. But,
absence of w updates imply that δ[t+ 1] 6= δ[t+ 2], which
further implies O[t+ 1] > O[t+ 2] ≥ O[u+ 1], contradict-
ing the earlier equality. Hence, δ[t] 6= δ[u].

Theorem 1 (b) states that δ cannot repeat between two
consecutive updates to w (in iterationsWi andWi+1). Since
δ can only take a finite number of values, this implies the
number of iterations betweenWi andWi+1 is bounded. Sim-
ilarly, Theorem 1(a) states that δ[Wi] can never repeat for
values Wj ∈ W. By a similar argument as above and The-
orem 1(b), we conclude that Wi is bounded for all i. Thus,
the proposed alternating minimization algorithm cannot os-
cillate and terminates in a finite number of iterations.

Table 1: Data set statistics

Data set
Train Features Labels Test Avg. labels Avg. pts
N D L M per pt. per label

BibTeX 4880 1836 159 2515 2.40 111.71
Delicious 12920 500 983 3185 19.02 311.61
MediaMill 30993 120 101 12914 4.38 1902.16
RCV1-X 781265 47236 2456 23149 4.61 1510.13
WikiLSHTC 1892600 1617899 325056 472835 3.26 23.74
Ads-430K 1118084 87890 434594 502926 2.10 7.86
Ads-1M 3917928 164592 1082898 1563137 1.96 7.07

Table 2: Results on small and medium data sets. FastXML
was run with default hyper-parameter settings on all data
sets. FastXML-T presents results when the parameters were
tuned.

(a) BibTeX N = 4.8K,D = 1.8K,L = 159

Algorithm P1 (%) P3 (%) P5 (%)
FastXML-T 64.53± 0.72 40.17± 0.63 29.27± 0.53
FastXML 63.26± 0.84 39.19± 0.66 28.72± 0.48
MLRF 62.81± 0.84 38.74± 0.69 28.45± 0.43
LPSR 62.95± 0.70 39.16± 0.64 28.75± 0.45
1-vs-All 63.39± 0.64 39.55± 0.65 29.13± 0.45

(b) Delicious N = 13K,D = 500K,L = 983

Algorithm P1 (%) P3 (%) P5 (%)
FastXML 69.65± 0.82 63.93± 0.50 59.36± 0.57
MLRF 67.86± 0.70 62.02± 0.55 57.59± 0.43
LPSR 65.55± 0.99 59.39± 0.48 53.99± 0.31
1-vs-All 65.42± 1.05 59.34± 0.56 53.72± 0.50

(c) MediaMill N = 30K,D = 120, L = 101

Algorithm P1 (%) P3 (%) P5 (%)
FastXML 87.35± 0.27 72.14± 0.20 58.15± 0.15
MLRF 86.83± 0.18 71.18± 0.19 57.09± 0.16
LPSR 82.33± 2.15 66.37± 0.35 50.00± 0.20
1-vs-All 82.31± 2.19 66.17± 0.43 50.32± 0.56

(d) RCV1-X N = 781K,D = 47K,L = 2.5K

Algorithm P1 (%) P3 (%) P5 (%)
FastXML 91.23± 0.22 73.51± 0.25 53.31± 0.65
MLRF 87.66± 0.46 69.89± 0.43 50.36± 0.74
LPSR 90.04± 0.19 72.27± 0.20 52.34± 0.61
1-vs-All 90.18± 0.18 72.55± 0.16 52.68± 0.57

0 10 20 30 40 50
No. of Trees

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
re

c@
5

BibTeX
Delicious
MediaMill
RCV1-X
Ads-430K
WikiLSHTC

(a) Random order

0 10 20 30 40 50
No. of Trees

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
re

c@
5

BibTeX
Delicious
MediaMill
RCV1-X
Ads-430K
WikiLSHTC

(b) Forward sequential

Figure 1: The variation in FastXML’s precision at 5 with the
number of trees selected according to (1a) random order; and
(1b) highest individual prediction accuracy on the training
set. The training time can be halved on most data sets with
a minimal decrease in prediction accuracy by training only
25 trees in random order.

5. EXPERIMENTS

Table 3: Results on large data sets comparing the perfor-
mance of FastXML to LPSR trained with Näıve Bayes as
the base classifier.

(a) WikiLSHTC N = 1.78M,D = 1.62M,L = 325K

Algorithm P1 (%) P3 (%) P5 (%)
Train Time Test Time

(hr) (min)

FastXML 49.78 33.06 24.40 9.14 5.10
LPSR-NB 27.91 16.04 11.57 1.59 3.52

(b) Ads-430K N = 1.12M,D = 88K,L = 0.43M

Algorithm P1 (%) P3 (%) P5 (%)
Train Time Test Time

(hr) (min)

FastXML 27.24 16.28 11.91 1.81 1.68
LPSR-NB 19.69 12.71 9.70 0.84 3.95

(c) Ads-1M N = 3.91M,D = 165K,L = 1.08M

Algorithm P1 (%) P3 (%) P5 (%)
Train Time Test Time

(hr) (min)

FastXML 23.45 14.21 10.41 8.09 6.26
LPSR-NB 17.08 11.38 8.83 3.78 19.32

Table 4: FastXML’s wall clock training time (in hours) vs
the number of cores used on a single machine.

Cores WikiLSHTC (hr) Ads-430K (hr) Ads-1M (hr)
1 16.80 (1.00×) 2.46 (1.00×) 12.34 (1.00×)
2 8.62 (1.94×) 1.24 (1.98×) 7.09 (1.74×)
4 4.53 (3.71×) 0.62 (3.97×) 3.93 (3.13×)
8 2.21 (7.60×) 0.33 (7.45×) 2.09 (5.90×)
16 1.27 (13.22×) 0.19 (12.95×) 1.02 (12.10×)

Table 5: The variation in FastXML’s performance with the
number of training iterations. Wi denotes the iteration at
which w is updated for the ith time at the root node on the
Ads-430K data set. Precision values and training times are
reported for the full ensemble.

i Wi
Objective Train time P1 P3 P5

value (hr) (%) (%) (%)
1 15 403419.87 1.88 27.21 16.28 11.89
2 21 237151.20 3.79 27.01 16.39 12.09
3 24 183542.04 5.60 26.95 16.37 12.10
4 26 163416.65 7.33 26.98 16.38 12.11
5 29 153592.21 8.99 26.93 16.38 12.11

This Section compares the performance of FastXML to
MLRF, LPSR and the 1-vs-All baseline on some of the largest
multi-label classification data sets.

Data sets: Experiments were carried out on data sets
with label set sizes ranging from a hundred to a million to
benchmark the performance of FastXML in various regimes.
The data sets include two small scale data sets with hun-
dreds of labels, BibTeX [23] and MediaMill [28], two medium
scale data sets with thousands of labels, Delicious [30] and
RCV1-X, and three large scale data sets with up to a million
labels, WikiLSHTC [1], Ads430K and Ads1M. Table 1 lists
the statistics of these data sets.

Features and labels are publically available for all the data
sets, apart from the two proprietary Ads data sets, and were
used in the experiments. WikiLSHTC is a challenge data set
for which the test set has not been released and we therefore

Table 6: FastXML learns more stable and balanced trees
than MLRF and LPSR leading to both faster training as
well as faster prediction. Tree balance is measured as
H/ log(N/MaxLeaf), where H is the average length of the
path traversed by a point in that tree and log(N/MaxLeaf)
is the average length of a path traversed in a perfectly bal-
anced tree with at most MaxLeaf points at each leaf node.
Smaller values of tree balance are better with a balance of
1 indicating a perfectly balanced tree.

Data set
Tree Balance: H

log(N/MaxLeaf)
Avg. labels per

FastXML MLRF LPSR leaf for FastXML

BibTeX 1.02± 0.01 3.45± 0.01 1.56± 0.11 6.15
Delicious 1.03± 0.01 4.95± 0.01 3.14± 0.71 69.12
MediaMill 1.01± 0.01 1.59± 0.01 1.06± 0.01 10.26
RCV1-X 1.02± 0.01 5.62± 0.15 1.32± 0.02 18.73
WikiLSHTC 1.01± 0.01 - 3.69± 0.01 13.36
Ads-430K 1.00± 0.01 - 94.71± 0.01 10.97
Ads-1M 1.00± 0.01 - 105.83± 0.01 11.03

partitioned the data provided into 75% for training and 25%
for testing. The RCV1-X data set has the same features
as the original RCV1 data set but its label set has been
expanded by forming new labels from pairs of original labels.
The two proprietary Ads data sets comprise of bag of words
TF-IDF features extracted from expansions of queries from
the Bing query logs. Other queries similar to a given query
are used as labels for that query.

Results are reported by averaging over ten random train
and test splits for the small and medium data sets apart
from RCV1-X for which only 3 splits were used. A single
split was used for the large data sets.

Baseline algorithms: FastXML was compared to state-
of-the-art tree based extreme multi-label methods such as
MLRF and LPSR (see Section 2 for details) as well as the
1-vs-All baseline as implemented in M3L [18]. The 1-vs-
All strategy was also used to learn the base classifier for
LPSR on the small and medium data sets as it offered better
performance as compared to other base classifiers such as
Wsabie [34]. Unfortunately, M3L and Wsabie cannot be
trained on the large data sets on a single desktop in a day.
Näıve Bayes was therefore used as a base classifier for LPSR
on these data sets.

Finally, note that we do not compare explicitly to embed-
ding methods [4, 8, 10, 12, 15, 19, 20, 22, 29, 34, 36, 38] since
none of these have been shown to consistently outperform
the 1-vs-All base classifier.

Parameters: The following hyper-parameters settings
were used for FastXML across all data sets: (a) Co-efficient
of logistic-loss: Cδ = 1.0; (b) Co-efficient of negative-nDCG
loss: Cr = 1.0; (c) Number of trees: T = 50; (d) Maximum
number of instances allowed in a leaf node: MaxLeaf = 10;
(e) Number of labels in a leaf node whose probability scores
are retained: k = 20; (f) Bias multiplier for Liblinear: 1.0;
(g) Number of training iterations in Algorithm 2: 1; and
(h) Maximum number of (outer,inner) iterations of Liblinear
before termination: (10, 10). Using these default settings, it
was observed that FastXML could outperform LPSR, MLRF
and the 1-vs-All M3L. Tuning the hyper-parameters for each
data set would lead to even superior prediction accuracies.
The hyper-parameters for MLRF, LPSR and M3L were set
using fine grained validation on each data set so as to achieve
the highest possible prediction accuracy for each method.

Table 7: Results obtained by replacing the nDCG@L
loss function in FastXML with others such as nDCG@5
(FastXML-nDCG5) or precision at 5 (FastXML-P5) and
by replacing the Gini index in MLRF with the proposed
nDCG@L loss function.

(a) BibTeX N = 4.8K,D = 1.8K,L = 159

Algorithm P1 (%) P3 (%) P5 (%)
FastXML 63.26± 0.84 39.19± 0.66 28.72± 0.48
FastXML-P5 39.95± 1.09 23.01± 0.46 17.42± 0.36
FastXML-nDCG5 51.75± 1.28 30.87± 0.63 22.70± 0.42
MLRF-nDCG 58.41± 1.20 36.45± 0.65 26.95± 0.49

(b) Delicious N = 13K,D = 500K,L = 983

Algorithm P1 (%) P3 (%) P5 (%)
FastXML 69.65± 0.82 63.93± 0.50 59.36± 0.57
FastXML-P5 60.11± 0.91 53.97± 0.53 49.81± 0.58
FastXML-nDCG5 64.96± 0.83 59.28± 0.69 54.70± 0.56
MLRF-nDCG 66.70± 0.75 61.08± 0.44 56.72± 0.44

(c) MediaMill N = 30K,D = 120, L = 101

Algorithm P1 (%) P3 (%) P5 (%)
FastXML 87.35± 0.27 72.14± 0.20 58.15± 0.15
FastXML-P5 80.73± 0.29 67.48± 0.22 54.11± 0.20
FastXML-nDCG5 86.66± 0.27 70.81± 0.21 56.51± 0.20
MLRF-nDCG 86.67± 0.26 71.13± 0.22 57.24± 0.21

(d) RCV1-X N = 781K,D = 47K,L = 2.5K

Algorithm P1 (%) P3 (%) P5 (%)
FastXML 91.23± 0.22 73.51± 0.25 53.31± 0.65
FastXML-P5 66.62± 0.23 56.41± 0.40 40.83± 0.14
FastXML-nDCG5 75.60± 0.39 60.85± 0.43 43.98± 0.16
MLRF-nDCG 87.19± 0.41 69.69± 0.46 50.25± 0.56

(e) WikiLSHTC N = 1.78M,D = 1.62M,L = 325K

Algorithm P1 (%) P3 (%) P5 (%)
FastXML 49.78 33.06 24.40
FastXML-P5 18.74 12.33 8.71
FastXML-nDCG5 20.50 12.51 8.80

(f) Ads-430K N = 1.12M,D = 88K,L = 0.43M

Algorithm P1 (%) P3 (%) P5 (%)
FastXML 27.24 16.28 11.91
FastXML-P5 25.06 14.36 10.27
FastXML-nDCG5 24.93 14.34 10.29

(g) Ads-1M N = 3.91M,D = 165K,L = 1.08M

Algorithm P1 (%) P3 (%) P5 (%)
FastXML 23.45 14.21 10.41
FastXML-P5 21.09 12.32 8.87
FastXML-nDCG5 21.25 12.47 9.01

Evaluation Metrics: Extreme multi-label classification
data sets exhibit positive label sparsity in that each data
point has only a few positive labels associated with it. It
therefore becomes important to focus on the accurate pre-
diction of the few positive labels per data point than on the
vast number of negative ones. As such, most papers [2, 19,
22, 34–36] evaluate prediction accuracy using precision at k
which counts the number of correct predictions in the top
k positive predictions. More formally, the precision at k for
a prediction ŷ ∈ RL given the ground truth label vector

y ∈ {0, 1}L is defined as

Pk(ŷ,y) =
1

k

∑
i∈rankk(ŷ)

yi. (16)

All experiments were carried out on a single core of an
Intel Core 2 Duo machine running at 3.3 GHz with 8 Gb
of RAM. Training times were measured using the clock

function available in C++. Parallelization experiments in
Table 4 were carried out on multiple cores of Intel Xeon
processors running at 2.1 GHz.

Results on small and medium data sets: Table 2
benchmarks the performance of FastXML on the small and
medium data sets where accurate MLRF, LPSR and 1-vs-All
models could be learnt. The focus is on prediction accuracy
as neither training nor prediction present any challenge on
these data sets – even the expensive MLRF, LPSR and 1-
vs-All can be trained in seconds on BibTeX and Delicious,
in minutes on MediaMill and in two hours on RCV1-X.

As compared to LPSR and 1-vs-All, FastXML could be
up to 5% more accurate in terms of precision at 1 and up
to 8% in terms of precision at 5. Large improvements were
obtained on both Delicious and MediaMill. The smallest im-
provements were obtained on BibTeX which had less than
five thousand training points. FastXML with default param-
eter settings gave more or less the same P1 as LPSR and
1-vs-All on BibTeX. A marginal improvement of 1% over
the other methods could be obtained by tuning FastXML’s
hyper-parameters (referred to as FastXML-T in Table 2).
FastXML’s gains over MLRF were smaller as compared to
the gains over LPSR and 1-vs-All but could still go up to
3% in terms of both precision at 1 and at 5 (on RCV1-
X). All in all, these results indicate that FastXML could be
significantly more accurate at prediction than highly tuned
MLRF, LPSR and 1-vs-All classifiers.

Results on large data sets: Extreme classification is
most concerned with large scale data sets having hundreds
of thousands or even millions of labels. Training MLRF
and 1-vs-All on such data sets was found to be infeasible
without using a large cluster. LPSR training could be made
tractable on a single core by replacing the 1-vs-All base clas-
sifier with Näıve Bayes. Table 3 compares the performance
of FastXML to LPSR-NB. FastXML’s improvements over
LPSR-NB in terms of P1 ranged from 5% on Ads-1M to al-
most 22% on WikiLSHTC and in terms of P5 ranged from
approximately 1.5% on Ads-1M to almost 13% on WikiL-
SHTC. FastXML could train in 1.81 hours on Ads-430K
using a single core and in 8 to 9 hours on Ads-1M and Wik-
iLSHTC with individual trees being grown in about 10 min-
utes. This opens up the possibility of practitioners training
accurate extreme classification models on commodity hard-
ware. Finally, FastXML could be almost 1.5 to 3 times faster
at prediction than LPSR-NB which could be a critical factor
in certain applications.

Validating FastXML’s hyper-parameter settings and
design choices: Table 4 lists the reduction in wall clock
training time obtained by growing FastXML’s trees in paral-
lel across multiple cores on a single machine. Training could
be speeded up 12 to 13 times by utilizing 16 cores demon-
strating that FastXML is trivially parallelizable. The entire
ensemble could be trained in approximately an hour on Ads-
1M and WikiLSHTC and in 12 minutes on Ads-430K.

All the FastXML results presented so far were obtained
by terminating the proposed optimization algorithm after a

single update to w. Table 5 shows the effects of allowing
multiple updates to w while training on the Ads-430K data
set. High precisions were reached after the first update to
w which occurred after 15 updates to δ and r. Subsequent
updates to w, δ and r yielded a significant drop in the value
of the objective function but little change in prediction ac-
curacy. As such, it would appear that training time could
be significantly reduced without much loss in precision by
early termination.

Table 7 reports the effects of replacing the proposed nDCG@L
loss function in FastXML with others such as precision at
5 (FastXML-P5) and nDCG@5 (FastXML-nDCG5). As is
evident, both these loss functions were inferior to nDCG@L
even when performance was measured using precision at 5.
This demonstrates that rank sensitive loss functions such as
nDCG are better suited to extreme multi-label classification
as compared to rank insensitive ones such as precision. Fur-
thermore, nDCG should be computed non-myopically over
all labels rather than just the top few.

Finally, the key difference in FastXML’s formulation as
compared to MLRF’s was the use of the nDCG based loss
function and the use of a linear separator to partition each
node. Table 7 demonstrates that both these ingredients
were necessary as simply replacing the Gini index or en-
tropy in MLRF with the nDCG based loss function (MLRF-
nDCG) yielded significantly poorer results as compared to
FastXML.

6. CONCLUSIONS
This paper developed the FastXML algorithm for multi-

label learning with a large number of labels. FastXML learnt
an ensemble of trees with prediction costs that were loga-
rithmic in the number of labels. The key technical contribu-
tion in FastXML was a novel node partitioning formulation
which optimized an nDCG based ranking loss over all the
labels. Such a loss was found to be more suitable for ex-
treme multi-label learning than the Gini index optimized by
MLRF or the clustering error optimized by LPSR. nDCG is
known to be a hard loss to optimize using gradient descent
based techniques. FastXML therefore developed an efficient
alternating minimization algorithm for its optimization. It
was proved that the proposed alternating minimization al-
gorithm would not oscillate and would converge in a finite
number of iterations. Experiments revealed that FastXML
could be significantly more accurate than MLRF and LPSR
while efficiently scaling to problems with more than a mil-
lion labels. The FastXML code is publically available and
should enable practitioners to train accurate extreme multi-
label models without needing large clusters.

Acknowledgments
We are very grateful to Purushottam Kar and Prateek Jain
for helpful discussions. Yashoteja Prabhu is supported by a
TCS PhD Fellowship at IIT Delhi.

7. REFERENCES
[1] Wikipedia dataset for the 4th large scale hierarchical

text classification challenge.
http://lshtc.iit.demokritos.gr/.

[2] R. Agrawal, A. Gupta, Y. Prabhu, and M. Varma.
Multi-label learning with millions of labels:

http://lshtc.iit.demokritos.gr/

Recommending advertiser bid phrases for web pages.
In WWW, pages 13–24, 2013.

[3] G. Andrew and J. Gao. Scalable training of
L 1-regularized log-linear models. In ICML, pages
33–40, 2007.

[4] K. Balasubramanian and G. Lebanon. The landmark
selection method for multiple output prediction. In
ICML, 2012.

[5] S. Bengio, J. Weston, and D. Grangier. Label
embedding trees for large multi-class tasks. In NIPS,
2010.

[6] D. Bertsekas. Nonlinear Programming. Athena
Scientific, 1999.

[7] W. Bi and J. T.-Y. Kwok. Multilabel classification on
tree- and dag-structured hierarchies. In ICML, 2011.

[8] W. Bi and J. T.-Y. Kwok. Efficient multi-label
classification with many labels. In ICML, pages
405–413, 2013.

[9] N. Cesa-Bianchi, C. Gentile, and L. Zaniboni.
Incremental algorithms for hierarchical classification.
JMLR, 7, 2006.

[10] Y.-N. Chen and H.-T. Lin. Feature-aware label space
dimension reduction for multi-label classification. In
NIPS, pages 1538–1546, 2012.

[11] A. Choromanska and J. Langford. Logarithmic time
online multiclass prediction.
http://arxiv.org/abs/1406.1822, 2014.

[12] M. Cissé, N. Usunier, T. Artières, and P. Gallinari.
Robust bloom filters for large multilabel classification
tasks. In NIPS, pages 1851–1859, 2013.

[13] J. Deng, S. Satheesh, A. C. Berg, and F. Li. Fast and
balanced: Efficient label tree learning for large scale
object recognition. In NIPS, 2011.

[14] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang,
and C.-J. Lin. LIBLINEAR: A library for large linear
classification. JMLR, 9:1871–1874, 2008.

[15] C.-S. Feng and H.-T. Lin. Multi-label classification
with error-correcting codes. JMLR, pages 289–295,
2011.

[16] T. Gao and D. Koller. Discriminative learning of
relaxed hierarchy for large-scale visual recognition. In
ICCV, pages 2072–2079, 2011.

[17] P. Geurts, D. Ernst, and L. Wehenkel. Extremely
randomized trees. ML, pages 3–42, 2006.

[18] B. Hariharan, S. V. N. Vishwanathan, and M. Varma.
Efficient max-margin multi-label classification with
applications to zero-shot learning. ML, 2012.

[19] D. Hsu, S. Kakade, J. Langford, and T. Zhang.
Multi-label prediction via compressed sensing. In
NIPS, 2009.

[20] S. Ji, L. Tang, S. Yu, and J. Ye. Extracting shared
subspace for multi-label classification. In KDD, pages
381–389, 2008.

[21] C. Jose, P. Goyal, P. Aggrwal, and M. Varma. Local
deep kernel learning for efficient non-linear svm
prediction. In ICML, June 2013.

[22] A. Kapoor, R. Viswanathan, and P. Jain. Multilabel
classification using bayesian compressed sensing. In
NIPS, 2012.

[23] I. Katakis, G. Tsoumakas, and I. Vlahavas. Multilabel
text classification for automated tag suggestion. In
ECML/PKDD Discovery Challenge, 2008.

[24] K. Koh, S.-J. Kim, and S. Boyd. An interior-point
method for large-scale l1-regularized logistic
regression. JMLR, 8:1519–1555, 2007.

[25] A. Kustarev, Y. Ustinovsky, Y. Logachev,
E. Grechnikov, I. Segalovich, and P. Serdyukov.
Smoothing ndcg metrics using tied scores. In CIKM,
pages 2053–2056, 2011.

[26] P. D. Ravikumar, A. Tewari, and E. Yang. On ndcg
consistency of listwise ranking methods. In AISTATS,
pages 618–626, 2011.

[27] J. Rousu, C. Saunders, S. Szedmak, and
J. Shawe-Taylor. Kernel-based learning of hierarchical
multilabel classification models. JMLR, 7, 2006.

[28] C. Snoek, M. Worring, J. van Gemert, J.-M.
Geusebroek, and A. Smeulders. The challenge problem
for automated detection of 101 semantic concepts in
multimedia. In ACM Multimedia, pages 421–430, 2006.

[29] F. Tai and H.-T. Lin. Multi-label classification with
principal label space transformation. In Workshop
proceedings of learning from multi-label data, 2010.

[30] G. Tsoumakas, I. Katakis, and I. Vlahavas. Effective
and efficient multilabel classification in domains with
large number of labels. In ECML/PKDD 2008
Workshop on Mining Multidimensional Data, 2008.

[31] H. Valizadegan, R. Jin, R. Zhang, and J. Mao.
Learning to rank by optimizing ndcg measure. In
SIGIR, pages 41–48, 2000.

[32] M. N. Volkovs and R. S. Zemel. Boltzrank: Learning
to maximize expected ranking gain. In ICML, pages
1089–1096, 2009.

[33] Y. Wang, L. Wang, Y. Li, D. He, and T.-Y. Liu. A
theoretical analysis of nDCG type ranking measures.
In COLT, pages 25–54, 2013.

[34] J. Weston, S. Bengio, and N. Usunier. Wsabie: Scaling
up to large vocabulary image annotation. In IJCAI,
2011.

[35] J. Weston, A. Makadia, and H. Yee. Label partitioning
for sublinear ranking. In ICML, volume 28, pages
181–189, 2013.

[36] H.-F. Yu, P. Jain, P. Kar, and I. S. Dhillon.
Large-scale multi-label learning with missing labels.
ICML, 2014.

[37] G.-X. Yuan, C.-H. Ho, and C.-J. Lin. An improved
glmnet for l1-regularized logistic regression. JMLR,
13:1999–2030, 2012.

[38] Y. Zhang and J. G. Schneider. Multi-label output
codes using canonical correlation analysis. In
AISTATS, pages 873–882, 2011.

http://arxiv.org/abs/1406.1822

	Introduction
	Related Work
	FastXML
	FastXML overview
	Learning to partition a node
	Prediction

	Optimizing FastXML
	Optimizing with respect to r r r r
	Optimizing with respect to
	Optimizing with respect to w w w w
	Finite termination

	Experiments
	Conclusions
	References

