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ABSTRACT
Recommending phrases from web pages for advertisers to
bid on against search engine queries is an important re-
search problem with direct commercial impact. Most ap-
proaches have found it infeasible to determine the relevance
of all possible queries to a given ad landing page and have
focussed on making recommendations from a small set of
phrases extracted (and expanded) from the page using NLP
and ranking based techniques. In this paper, we eschew this
paradigm, and demonstrate that it is possible to efficiently
predict the relevant subset of queries from a large set of mon-
etizable ones by posing the problem as a multi-label learning
task with each query being represented by a separate label.
We develop Multi-label Random Forests to tackle prob-

lems with millions of labels. Our proposed classifier has
prediction costs that are logarithmic in the number of la-
bels and can make predictions in a few milliseconds using 10
Gb of RAM. We demonstrate that it is possible to generate
training data for our classifier automatically from click logs
without any human annotation or intervention. We train our
classifier on tens of millions of labels, features and training
points in less than two days on a thousand node cluster. We
develop a sparse semi-supervised multi-label learning for-
mulation to deal with training set biases and noisy labels
harvested automatically from the click logs. This formula-
tion is used to infer a belief in the state of each label for each
training ad and the random forest classifier is extended to
train on these beliefs rather than the given labels. Experi-
ments reveal significant gains over ranking and NLP based
techniques on a large test set of 5 million ads using multiple
metrics.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning
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1. INTRODUCTION
Our objective is to design an algorithm for automatically

recommending bid phrases to an advertiser from a given
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ad landing page. The advertiser can choose to bid on spe-
cific recommendations so as to maximize the ad’s chances
of getting triggered in response to a relevant search engine
query. This is an important research problem from a sci-
entific as well as a commercial perspective as it facilitates
the automation of large scale campaign creation and enables
both premium and small advertisers to make more informed
choices about their bid phrases.

A natural way of formulating the problem, from a ma-
chine learning perspective, would be to pose it as a super-
vised multi-label learning task with each query that could
potentially be asked at a search engine corresponding to a
separate label. The objective would be to learn a multi-
label classifier which could predict the most relevant set of
labels (queries) in response to a given ad landing page. How-
ever, such an approach has traditionally been considered to
be infeasible due to four primary reasons. First, supervised
learning techniques typically deal with problems involving
hundreds to thousands of labels and it is not clear how to for-
mulate problems involving an infinite number of labels. Sec-
ond, obtaining good quality annotated training data would
be a daunting task at this scale. Third, training such a high
capacity classifier in a reasonable amount of time might re-
quire significant resources. Fourth, it might be difficult to
ensure that such a complex classifier could process a novel
ad landing page and make predictions in a few milliseconds
as required by most applications.

In order to avoid these stiff challenges, state-of-the-art
techniques for bid phrase recommendation take a very dif-
ferent approach based on ranking [32, 46]. They typically
learn a ranker, or binary classifier, which takes both the ad
landing page and a potential bid phrase as input and predicts
whether the potential bid phrase is relevant to the given ad
landing page or not. The classifier is dependent on joint ad-
phrase features and can therefore only be applied to phrases
present on the ad landing page. In addition, a query lan-
guage model is used to ensure that phrases selected by the
classifier are well formed, potentially monetizable, queries.

The ranking based paradigm sidesteps the challenges faced
by the multi-label learning approach. In particular, one
never needs to deal with an infinite label space but only make
binary predictions regarding whether a phrase is a relevant,
well-formed query or not. Furthermore, getting annotated
training data is straightforward and linear binary classifiers
can be trained very efficiently. Prediction costs are also low
as the classifier is limited to testing only the phrases present
on the given ad landing page.



However, the ranking paradigm also suffers from two short-
comings. The inability of the classifier to suggest bid phrases
not present on the page is a severe limitation since many ad
landing pages have very little text on them. It would ap-
pear that brevity is the soul of advertising. It would also
appear that a picture is worth a thousand words as many
premium advertisers prefer conveying their message visually
(including converting the text on their ad landing pages into
embedded images so as to make sure they render well even
when the user does not have the proper fonts installed). In a
large scale evaluation, we found the ranking based technique
of [46] was unable to recommend even ten bid phrases for
millions of ad landing pages. One could try to expand the
set of recommended bid phrases using query expansion or
monolingual machine translation techniques [32]. However,
such techniques were not found to be very helpful in situ-
ations where the seed set being expanded was small. One
could also potentially tackle this problem by using docu-
ment expansion techniques, or by bringing in meta-stream
information from the logs, but such approaches are typically
avoided as they increase the cost of prediction.
The second major limitation is due to the use of a single,

low capacity, binary classifier which cannot model the rich
relationship between billions of bid phrases and ad landing
pages. As a result, even when there is enough text present
on the ad landing page for the binary classifier to make pre-
dictions, the quality of the recommendations can sometimes
be poor. Both limitations are highlighted in Figure 1.
In this paper, we demonstrate that it is possible to tractably

formulate bid phrase recommendation as a supervised multi-
label learning task. While the number of queries that could
potentially be asked at a search engine is infinite, the num-
ber of queries that generate the vast majority of revenue is
around ten million. We therefore treat each of these ten mil-
lion queries as a separate label in our multi-label classifier.
The advantage of our formulation is that it naturally allows
recommending queries not present on the given ad landing
page. Furthermore, by learning a high capacity classifier
in a large output space, we hope that we can have a much
richer model for capturing the relationship between ad land-
ing pages and relevant queries.
Our contributions are as follows: We pose bid phrase rec-

ommendation as a multi-label learning problem with ten
million labels. We design a Multi-Label Random Forest
(MLRF) classifier whose prediction costs are logarithmic in
the number of labels and which can make predictions in
a few milliseconds using 10 GB of RAM. We develop ef-
ficient algorithms for training our classifier on 90 million
training points, 10 million labels and 6 million features in
less than a day on a cluster of a thousand nodes. We harvest
training data automatically from our click logs and require
no manual annotation. We develop a novel sparse semi-
supervised multi-label learning formulation to mitigate the
effect of training set biases which creep in due to automatic
training set generation. Experiments on a large test set of
5 million ads reveal that our MLRF classifier can make at
least a hundred recommendations on almost all ad landing
pages and that these recommendations are significantly bet-
ter than those made by ranking based techniques.
The rest of the paper is organized as follows. We dis-

cuss related work in Section 2 and review bid phrase recom-
mendation approaches as well as techniques for multi-label
learning with a large number of labels. We then develop

our multi-label formulation in Section 3. We discuss how
to automatically generate training data for our Multi-Label
Random Forest classifier and show how it can be trained
efficiently and used for making predictions in a few millisec-
onds. We develop a sparse semi-supervised multi-label learn-
ing formulation in Section 4 to mitigate the effects of biases
introduced in automatic training set generation. We com-
pare our multi-label approach to ranking based techniques
in Section 5 and draw conclusions in Section 6.

2. RELATED WORK
Bid phrase recommendation is an important research prob-

lem with direct commercial impact. Many approaches as-
sume that the advertiser has provided a seed set of bid
phrases from the ad landing page and focus on expanding
the seed set [1, 2, 10, 11, 23, 28, 29]. Recent approaches have
argued for extracting bid phrases from the ad landing page
directly [14,32,44,46] as premium advertisers can then avoid
the onerous task of providing seed sets for the thousands of
landing pages in a large campaign. Small advertisers, who
might not be familiar with the nuances of online advertising,
also benefit from not having to specify seed sets since their
choices can sometimes include irrelevant bid phrases and are
sometimes too small for expansion algorithms to give good
results.

The KEX system of [46] is a ranking based approach
which learns a binary logistic regression classifier to pre-
dict whether each phrase present on the given ad landing
page is a relevant, well-formed query or not. The classifier
is trained on two types of features. Joint phrase-document
features, such as how often does the candidate phrase appear
on the ad landing page, does the candidate phrase appear
in the title, etc. are helpful in determining the relevance
of the candidate phrase to the ad landing page. Note that
these features evaluate to null if the candidate phrase does
not occur on the ad landing page. Phrase only features,
such as is the candidate phrase a short noun-phrase, how
much revenue did the candidate phrase generate in the re-
cent past, etc. are helpful in determining whether the candi-
date phrase is a well formed, potentially monetizable query.
All the candidate phrases present on the ad landing page are
ranked according to their probability as estimated by the lo-
gistic regression classifier. As discussed, being restricted to
recommending only those phrases that are present on the ad
landing page and using a low capacity binary classifier are
limitations which we hope to overcome using our multi-label
learning formulation.

An alternative approach to recommending phrases not
present on the ad landing page is to expand the original
suggestions using query expansion or monolingual transla-
tion techniques [32]. However, we did not find such tech-
niques to be helpful in situations where the original seed
set being expanded was very small. Note that the topic of
bid phrase and query expansion is, in a sense, orthogonal to
our work since even our recommendations can be expanded
using existing techniques.

Finally, the ideas developed in [14, 44] cover related work
but are not directly relevant to this paper as [44] focuses
on augmenting KEX with EBay specific features while [14]
studies the advanced matching of bid phrases to retrieve
relevant ads.

The objective in multi-label learning is to predict a set of
relevant labels for a given data point. This is in contrast to



multi-class classification which aims to predict only a single
label. The problem of multi-label classification with more la-
bels than samples was studied from a theoretical perspective
in [17]. They assume the existence of an efficient base clas-
sifier, such as our proposed random forest, and focus their
analysis on a procedure to prune away labels from the label
space so as to improve the base classifier’s accuracy. Their
analysis is quite interesting but orthogonal to many of the
base classifier issues that we address in this paper. Almost
all the other work on large category multi-label classification
deals with thousands of labels [21,24,41,42] and it is not im-
mediately clear that these techniques will scale to millions
of labels and beyond.
Random forests have been studied extensively for binary

and multi-class classification [9]. Multi-label decision trees
and random forests have also been well studied [6,15,25,26,
34,42,45]. However, none of these methods scales to millions
of labels.
Hierarchies can make it easier to learn from a large number

of labels [5, 12, 33]. While hierarchies can be obtained for
some applications from Wikipedia or WordNet, this is not
the case for us. Recent innovative work has focussed on
learning hierarchies [3, 4, 18] for multi-class problems with
thousands of categories. We compare our method to such
approaches in Section 3.

3. LEARNING WITH MILLIONS OF LABELS
The objective in multi-label learning is to predict a set of

relevant labels for a given data point. This is in contrast to
multi-class classification which aims to predict only a single
label. In this Section, we describe our approach for harvest-
ing training data automatically, developing a classifier with
prediction costs that are logarithmic in the number of labels
and training such a classifier in a reasonable amount of time.

3.1 Training Data
In order to generate our training data set, we downloaded

90 million ad landing pages off the Web and converted them
to a simple bag-of-words feature representation. Our vo-
cabulary contains approximately 6 million words and was
generated by taking all the words present in the 90 million
ad landing pages and removing stop words and words which
occurred in less than ten pages. The representation of each
ad landing page is therefore a sparse 6 million dimensional
feature vector containing TF-IDF values for each word com-
puted from the ad landing page’s raw HTML. Words occur-
ring in the title and anchor text have their counts boosted
by 10 due to their significance. Other features, such as bi-
grams, or features derived from the ad copy or from the
campaign, or even image based computer vision features or
category level information about the ad landing page could
be incorporated if desired.
Generating good quality annotations is a challenge. Train-

ing labels are typically obtained through an editorial process
where human experts annotate training data points with rel-
evant labels. However, at our scale, it is impossible for a
human to sift through ten million potential candidates to
determine the exact set of relevant labels for a given data
point (note that this is not so much of a problem in the
multi-class setting since selecting a single label is still rel-
atively straightforward). Thus, all training, validation and
test data points are likely to suffer from missing labels. It
is therefore infeasible to ask an editorial team to annotate

90 million ad landing pages when even a single ad landing
page cannot be properly annotated.

We therefore turn to automated procedures for harvesting
training labels. In particular, we mine the click logs over a
finite time window so as to determine the set of queries that
resulted in a click on a given ad landing page. These queries
are then treated as the set of positive labels for that training
page. We discarded all queries that did not generate at least
five clicks in total. Thus, the training labels for each ad
landing page are the subset of the 10 million queries which
resulted in a click on that ad over a given time window.

Note that this procedure introduces many biases into the
training set. Missing and incorrect labels abound in par-
ticular. Incorrect labels occur when users click on ads not
relevant to their query or due to intent changes. Such labels
can be potentially detected and discarded by human experts
but doing so is costly at our scale. Missing labels occur since
not all the queries relevant to an ad are likely to be observed,
or generate enough clicks to pass our threshold, during a fi-
nite data gathering time period. As discussed, missing labels
are impossible to correct manually since no human expert
can go through a list of 10 million labels and mark the ex-
act relevant subset. Note that irrelevant and missing labels
would occur even in alternative data gathering strategies
including training on conversion data or currently selected
bid phrases. Other biases creep in due to the ad serving and
click position bias, the fact that we inferred only a subset
of the positive labels for a given ad landing page and did
not infer the set of negative labels (irrelevant queries) for
that page. We mitigate the effect of some of these biases
by developing a sparse semi-supervised multi-label learning
formulation in Section 4.

Another source of training set bias is the skew in the distri-
bution of search engine queries. Due to the heavy tail, most
labels (queries) have at most a handful of positive training
examples while a few labels dominate with many training
data points. State-of-the-art discriminative classifiers such
as M3L [20] and MetaLabeler [38] would have, for most la-
bels, the daunting task of learning from a data set where the
ratio of positive to negative data points is 1 is to 10 million.
This problem is slightly mitigated for our proposed MLRF
classifier since it learns from only positive data and avoids
the suboptimal approach of treating missing and unobserved
labels as negative.

3.2 Logarithmic Prediction using Multi-Label
Random Forests

We seek to develop a classifier that can make predictions
in a few milliseconds using 10 Gb of RAM. Almost all the
multi-label classifiers that have been proposed in the liter-
ature have prediction costs that are at least linear in the
number of labels [8,19–22,24,38–42,47]. However, even lin-
ear prediction costs are infeasible at our scale. For instance,
with 10 million labels, the SVM based M3L classifier [20]
would take hours to make a single prediction and would re-
quire terabytes of RAM for storing the model parameters.

A few approaches have tried to alleviate this problem by
compressing the feature and label spaces [21, 24, 43]. If one
could compress the 10 million dimensional label space and
the 6 million dimensional feature space to a thousand di-
mensional common subspace then prediction could be car-
ried out efficiently. Unfortunately, compression tends to lose
information. Distinct queries such as “car”, “motor vehicle”



and “auto” might get compressed to the same label. This
is undesirable since “car” and “auto” generate more revenue
than “motor vehicle” and should be ranked higher when be-
ing recommended to advertisers. Thus, we need to make fine
grained distinctions between queries with the same seman-
tic meaning, queries with spelling variations and mistakes,
queries with different word orderings, etc. since they have
different monetization potentials. Compression, by itself, is
therefore undesirable. A post-processing step disambiguat-
ing the compressed queries might help but would increase
prediction costs.
Another approach to speeding up prediction would be to

learn a hierarchy or tree in label space. Recent work has de-
veloped techniques for multi-class problems involving many
thousands of categories [3,4,18]. The objective is to grow a
tree by partitioning a parent’s label space between its chil-
dren so that each individual child has to deal with far fewer
categories than the parent. The tree is grown until there is
a single category left at each leaf node and predictions can
therefore be made in time that is logarithmic in the total
number of categories. However, learning trees in label space
is a hard problem and none of the label-tree algorithms have
been tried out on multi-label problems with ten million la-
bels or more.
We propose a simpler solution based on learning a gat-

ing tree in feature space rather than learning a hierarchy
in label space. The intuition is that each region of feature
space contains only a small number of active labels. Effi-
cient prediction can therefore be carried out by determining
the region in which a novel point lies and focusing a multi-
label classifier of choice on only those labels that are active
in the region. For instance, one could use an unsupervised
hierarchical clustering technique to define the regions and as-
sociated sets of active labels. In this paper, we prefer a more
discriminative supervised learning approach which takes la-
bel information into account while determining regions and
active label sets. Unlike hierarchical clustering, we grow our
gating tree by partitioning a parent’s feature space between
its children so that each individual child has to deal with not
only fewer training data points but also labels. The active
label set at a node is the union of the labels of all training
points present in that node. Our gating tree is grown until
the number of active labels in each leaf node is logarithmic
in the total number of labels. It is simpler to grow such a
gating tree in feature space than learn a hierarchy in label
space and supervised learning algorithms for growing trees
in feature space, such as decision trees and random forests,
have been around for many decades.
When recommendations are sought for a new ad landing

page, the page is passed down the gating tree until it reaches
a leaf node. This determines the active label set. One can
now use a multi-label classifier of choice, such as a multi-
label SVM, by restricting it to the active label set. Note
that this is different from learning a decision tree with an
SVM as a leaf node classifier, since our leaf node classifiers
can be trained on points not present in the particular leaf
node.
However, using an SVM as the leaf node classifier in the

gating tree would still be relatively expensive during pre-
diction (as well as training). We therefore use a very sim-
ple classifier based on randomization which turns our gating
trees into multi-label random forests. We learn an ensemble
of randomized gating trees rather than a single tree. At pre-

diction time, a novel ad landing page is passed down each
tree to reach a leaf node with a different active label set.
The active label distributions can be aggregated over leaf
nodes and the most popular labels can be recommended to
the advertiser.

Predictions using our multi-label random forest can be
carried out very efficiently. The cost of traversing each tree
is logarithmic in the total number of training points which
is almost the same as being logarithmic in the total number
of labels. The cost of aggregating and sorting the leaf node
distributions is also logarithmic in the total number of labels.
As a result, recommendations for a novel ad landing page
can be made in a few milliseconds and storing the trees takes
less than 10 Gb of RAM.

3.3 Efficiently Training Multi-Label Random
Forests

We briefly review binary and multi-class random forests
before discussing how multi-label random forests might be
trained at scale.

3.3.1 Random Forests
A random forest is an ensemble of decision trees, each

of which is trained on a randomly drawn sample of data
points and features. Trees are grown by splitting leaf nodes
into a left and right child and partitioning the node’s data
points between the two children based on a splitting con-
dition. Splitting conditions (typically) compare a point’s
selected feature value to a threshold to determine whether
the point should be passed on to the left or right child. The
particular feature to select and the value of the threshold
are determined by optimizing a cost function such as the
class entropy or the Gini index. In more detail, one selects
a random set of features as well as a set of thresholds for
these features, and then chooses the single best feature and
threshold that result in minimal Gini index for the two chil-
dren. This process is repeated until all the trees are fully
grown or no further reduction in the Gini index is possible.
There exist many variants for each of the stages of random
forest training and some are covered in [9]. Predictions are
made by passing a test point through all the trees and then
aggregating the class distributions of the leaf nodes contain-
ing the test point.

3.3.2 Multi-Label Random Forests
We need to define and optimize an appropriate node split-

ting cost function in order to extend random forests to effi-
ciently handle multi-label problems with millions of labels.
The label entropy and the Gini index of the child nodes
continue to be attractive criteria since they ensure that the
distribution of labels in each individual child node is as com-
pact as possible. They also ensure that points within a node
are similar to each other and distinct from points in the sib-
ling node. However, for multi-label learning, the space over
which these compactness measures need to be calculated is
the power set of labels rather than the labels themselves.
Thus, we need to define probability measures over sets and
compute them efficiently. While one can come up with math-
ematically elegant definitions for such probabilities, we are
thwarted by the fact that the power set is exponentially large
in the number of labels. Calculating the Gini index over the
power set is therefore both computationally and statistically
inefficient.



Assuming that the labels are independent would bring
down the computational cost from exponential to not just
linear but to sublinear. For instance, if the labels were as-
sumed to be independent, the expression for the Gini index
of a node would simplify to

G =
∑

k∈{0,1}K

p(l = k)(1− p(l = k)) (1)

= 1−
∑

k∈{0,1}K

(

K
∏

k=1

p(lk = kk)

)2

(2)

= 1−

K
∏

k=1

(

p2(lk = 1) + (1− p(lk = 1))2
)

(3)

where K = 10 million is the total number of labels, p(lk =
1) = Nk/N is the probability of observing label k as a pos-
itive label in the node, Nk is the number of points in the
node which have label k as a positive label and N is the to-
tal number of points in the node. Note that p(lk = 1) = 0 for
labels not present in the node and these do not contribute to
the product. The expression for the Gini index therefore de-
pends only on the set of positive labels present in the node.
Since an ad landing page has only O(logK) positive labels
on average, the Gini index G can be computed very effi-
ciently as one goes down the tree and particularly towards
the leaf nodes. A similar result can be derived for the label
entropy. However, this expression for G implicitly assumes
that missing or unobserved labels are negatives and this is
not the case for us.
We therefore come up with an efficient alternative that

learns from positive labels alone. We select the feature f∗

and threshold t∗ satisfying

argmin
f,t

nl

K
∑

k=1

pl(lk = 1)(1− pl(lk = 1))+

nr

K
∑

k=1

pr(lk = 1)(1− pr(lk = 1)) (4)

where nl and nr are the number of points in the left and right
child and pl(lk = 1) and pr(lk = 1) are the probabilities of
observing label k as a positive label in the left and right child
respectively (note that nl, nr, pl and pr are all functions of f
and t). Furthermore, we define the probability of observing
a positive label in a node as

pl(lk = 1) =

nl
∑

i=1

pl(lk = 1|i)pl(i) (5)

where the sum is over all the ad landing pages present in the
left child, pl(lk = 1|i) is the probability of sampling label k
from the set of positive labels from ad landing page i and
pl(i) is the probability of sampling ad landing page i in the
left child (the distributions for the right child can be set up
in a similar manner). Different choices of these probability
distributions correspond to different underlying assumptions
about the data. Empirically, we found that setting p(lk =
1|i) to be uniform on the positive labels yielded the best
results. Thus, we set p(lk = 1|i) = yik/

∑

m
yim where we

have used the notation that the labels for ad landing page
i are specified in the vector yi ∈ {0, 1}K with yik being
1 if label k is assigned as a positive label to ad landing
page i and 0 otherwise. Rather than choosing p(i) to also

Algorithm 1 MLRFEvalObj(X,Y, f, t)

1: Il = {i|xif ≤ t}; Ir = {i|xif > t}
2: nl = |Il|; nr = |Ir|
3: pl(lk = 1|i) = yik∑

m yim
; pr(lk = 1|i) = yik∑

m yim

4: pl(i) =
∑

k yik∑
k,j∈Il

yjk
; pr(i) =

∑
k yik∑

k,j∈Ir
yjk

5: pl(lk = 1) =
∑

i∈Il
pl(lk = 1|i)pl(i);

pr(lk = 1) =
∑

i∈Ir
pr(lk = 1|i)pr(i)

6: G = nl

nl+nr

∑K

k=1
pl(lk = 1)(1− pl(lk = 1))+

nr

nl+nr

∑K

k=1
pr(lk = 1)(1− pr(lk = 1))

7: return G

be uniform, we found it better to sample ad landing pages
with probability proportional to how many positive labels
they had – i.e. p(i) =

∑

k
yik/

∑

ik
yik. The intuition is that

a landing page which has received clicks from a hundred
queries is probably a lot more important than a landing page
which has received clicks from only a single query. These
choices were empirically found to lead to better results as
compared to assuming that labels were independent but that
unobserved labels were implicitly negative. The Gini index
was also found to yield slightly better results than the label
entropy.

Note that these choices of label distributions intuitively
generalize multi-label random forests from multi-class ran-
dom forests by considering a node to be a bag of positive
labels with the probability of a label being the probability
of sampling it from the bag. Also note that the theoretical
results for standard random forests [9] can be readily derived
for our MLRF classifier. For instance, it is straightforward
to show that as the number of trees increases asymptotically,
MLRF’s predictions will converge to the expected value of
the ensemble generated by randomly choosing all parame-
ters and that the generalization error of MLRF is bounded
above by a function of the correlation between trees and the
average strength of the trees. Finally, while we did assume
label independence during random forest construction, la-
bel correlations present in the training data will be learnt
and implicitly taken into account while making predictions.
For instance, if two labels are perfectly correlated then they
will end up in the same leaf nodes and hence will be ei-
ther predicted, or not predicted, together. We do not take
label correlations into account explicitly, such as via a sec-
ond order label correlation model as is done in structured
output prediction [39,40], as prediction time would become
quadratic in the number of labels.

All in all, these choices allow MLRF to scale to large prob-
lems and train efficiently on millions of points, labels and
features without having to ever load the feature or label
matrix into RAM. Care should be taken during training to
ensure that the trees are properly regularized and balanced
and do not over fit.

3.3.3 Distributed Training
We leverage the MapReduce framework [16] to distribute

training over a thousand compute nodes each having only
2GB RAM. The naive strategy of growing a separate tree on
each machine doesn’t work due to the high cost of copying
the training data. Planet [31] provides an implementation
of a single label, single shallow tree model with tens of fea-
tures. This approach didn’t work well for us since we have



a hundred, deep trees (which do not fit in 2GB RAM) and
millions of labels and features. We introduce an extra layer
into the Planet hierarchy to cope with the large number of
features and the 10 million dimensional label distributions.
Each available worker node is assigned the task of calcu-
lating the splitting cost for only a small subset of training
data points. Combiner nodes then aggregate the splitting
cost across worker nodes. Finally, maximizer nodes choose
the feature and threshold pair with minimal cost across all
combiners. This hierarchy performs efficient load balancing
while keeping communication overheads low and speeds up
training significantly over Planet. As a result, we were able
to train on 90 million points, 10 million labels and 6 million
features in less than a day.

4. SPARSE SEMI-SUPERVISED MULTI-LABEL
LEARNING FOR MITIGATING TRAIN-
ING SET BIASES

The multi-label random forest formulation developed so
far does not take into account the fact that numerous pos-
itive labels are missing and that a few might have been
inferred incorrectly during the automatic training set har-
vesting process. Other biases such as the ad serving bias,
click position bias, query distribution bias have also not been
dealt with explicitly. One could try to mitigate the effect of
these biases by taking specific measures tailored to each indi-
vidual bias. For instance, negative labels might be inferred
using a pSkip model and the effect of the ad serving bias
might be mitigated by training on a mix of organic search
and ad clicks. In this Section, we develop an orthogonal pro-
cedure based on sparse semi-supervised multi-label learning
which can complement other bias specific measures.
One approach to mitigating the effect of some of these bi-

ases would be to post-process the MLRF predictions – for
instance, by performing a random walk on the click graph.
We avoid such approaches in this paper as they would in-
crease the cost of prediction. An alternative would be to
clean up the training set annotations by first inferring real
valued beliefs indicating the state of each label. Labels with
a strong belief that they were in an incorrect state could be
flipped to clean up the training data. A standard multi-label
classifier could then be trained on the cleaned labels. How-
ever, this involves taking hard decisions about whether to
flip labels or not early on in the training process. We found
it more beneficial to adapt our classifier to directly train on
the inferred belief vectors rather than the cleaned up labels.
To take a concrete example, suppose a car insurance ad

had not been labelled with the marginally relevant bid phrase
“cheap SUV insurance” during the automatic training set
generation phase. Our sparse semi-supervised learning pro-
cedure (detailed below) estimated that the label should have
been present with a belief of 0.6. Rather than adding the la-
bel with complete certainty to the training set, we get MLRF
to train on the label with a belief of 0.6. The hope would be
that MLRF would learn to predict the label for similar novel
ads but with a low score and rank it below highly relevant
labels such as “cheap car insurance”which were present with
belief 1.0 during training.
It would be necessary to reformulate most classifiers in

order for them to train on probabilistic, rather than certain,
labellings (note that this setting is very different from regres-
sion where one also trains on real valued targets). However,

Data Set
Num Num Num Num
Train Features Labels Test
(M) (M) (M) (M)

Wikipedia 1.53 1.88 0.97 0.66
Ads1 8.00 1.58 1.21 0.50
Web 40.00 2.62 1.21 1.50
Ads2 90.00 5.80 9.70 5.00

Table 1: Large scale multi-label learning data set
statistics. Ads1, Ads2 and Web are proprietary data
sets while Wikipedia is publicly available.

by deliberate design, we need to make no changes to our
random forest formulation or implementation as discussed in
section 3. The only conceptual change is that now yi ∈ ℜK

+

and that predictions are made by data points in leaf nodes
voting for labels with non-negative real numbers rather than
casting binary votes.

One way of inferring real valued scores for the missing
labels would be by performing one-class collaborative filter-
ing [30, 36] on the label matrix. Unfortunately, this seemed
not to work well in our case. What did work was the in-
tuition that even if a point was missing a label, some of its
nearest neighbours were very likely to have that label. Thus,
a point could infer its belief about the state of a particular
label based on the beliefs of its neighbours. This notion of
belief smoothness has been exploited in graph based semi-
supervised learning (SSL) [48] though not in this particular
context. We therefore formulate our sparse multi-label SSL
problem as

Min
F

P (F) = 1

2
Tr(Ft(I−D−

1

2WD−
1

2 )F) +
β

2
|F−Y|2Fr

s.t. |F|0 ≤ L (6)

where F and Y are our 90M×10M belief and label matrices
with non-negative entries, W is a 90M×90M positive defi-
nite matrix with non-negative entries representing the simi-
larity between two training points by the intersection of their
label sets and D is a diagonal matrix representing the row
or column sums of W. The l0 constraint on F is added as
we know that most data points can only have relatively few
positive labels. While other forms of sparsity have been in-
vestigated in SSL, such as sparsity in constructing the graph
or sparsity in the use of unlabelled data [37], our formulation
promoting sparsity in the belief vectors is novel and is also
different from previous multi-label SSL formulations [13,27]
which do not learn sparse solutions.

The non-convex l0 constraint results in a hard optimiza-
tion problem which is typically solved by state-of-the-art
optimizers using greedy methods [35]. For instance, the for-
ward greedy method computes the gradient ∇FP at each
iteration but takes only a greedy co-ordinate step to main-
tain sparsity. Such algorithms require at least L iterations
to obtain a L-sparse solution. This is infeasible at our scale
since L runs into the billions and computing ∇FP is rela-
tively expensive. Instead, we adapt the well-known iterative
hard thresholding algorithm which takes fixed length gradi-
ent steps followed by a projection onto the l0 ball to maintain
sparsity. The iterates are given by

Ft+1 = TopL(
1

1 + β
D−

1

2WD−
1

2Ft +
β

1 + β
Y ) (7)



where F0 = Y and the TopL operator retains the top L
elements of its argument while setting everything else to
zero. The optimization is carried out before MLRF training
and the resultant beliefs are then used as training labels for
MLRF. In practice, we found that terminating the algorithm
after 15 iterations resulted in a significant improvement in
MLRF’s predictions. Note that, in principle, this proce-
dure could also be used as a post-processing step to clean
up MLRF’s predictions for novel ads. However, we wish
to minimize prediction costs and hence do not explore this
option further in this paper.
It is straightforward to show, using the technique of [7],

that the iterative hard thresholding algorithm will converge
to a stationary point which will be a local or global minimum
of our sparse semi-supervised multi-label learning formula-
tion. The following formal statements can be made

Theorem 1. Let WN×N be a positive definite matrix with
non-negative entries and YN×K ∈ {0, 1}N×K be a binary la-
bel matrix. Then: (a) P (F0) ≥ P (F1) ≥ P (F2) ≥ · · · ; (b)
the sequence F0, F1, . . . converges to a stationary point F∗;
(c) F∗ is the global optimum if |F∗|0 < L; and (d) F∗ is a
local optimum if |F∗|0 = L.

5. EXPERIMENTS
In this Section, we evaluate the performance of the pro-

posed MLRF and MLRF+SSL classifiers. It is demonstrated
that our multi-label learning approach can recommend sig-
nificantly better bid phrases as compared to ranking and
NLP based techniques.

5.1 Data sets and ground truth
We present results on three proprietary Ads and web data

sets of HTML documents for which phrase recommendations
are sought. We also include Wikipedia, which is publically
available, for the reproducibility of our MLRF results. Ta-
ble 1 lists the statistics of these data sets out of which the
largest has 5 million test ad landing pages. For each data
set, we use a simple bag-of-words model and extract TF-
IDF features. We remove stop words and any word which
occurs in less than ten documents. Words occurring in the
title and anchor text have their counts boosted by 10 due to
their significance.
It is hard to obtain good quality ground truth labels in

order to carry out large scale automated performance eval-
uation. At the end of the day. advertisers would prefer

Data Set

Click Labels (%)
KEX KEX MLRF MLRF MLRF

+KSP +SSL +SSL
+KSP

Wikipedia 0.81 0.78 0.71 0.66 0.63
Ads1 0.83 0.76 0.71 0.65 0.61
Web 0.73 0.68 0.65 0.62 0.58
Ads2 0.77 0.73 0.69 0.63 0.59

Table 2: Automatic evaluation of phrase recommen-
dations using the edit distance as proposed in [32]
(smaller numbers are better). MLRF+SSL is almost
15% better than KEX on the Ads data sets and the
same is true for MLRF+SSL+KSP as compared to
KEX+KSP.

those recommendations which would increase their conver-
sion ratio. However, conversion data might not always be
readily available and might take time to measure even when
it is. We therefore used clicks and relevance as proxies for
conversions to generate ground truth.

For the Ads and Web data sets, a search engine query
was assigned as a label to a document if that query resulted
in a click on the document. All labels that failed to re-
ceive more than five clicks were discarded. As discussed,
this resulted in biased training, validation and test sets. In
particular, test points had missing and potentially incor-
rect labels. To mitigate some of these effects, the test sets
were constructed by including only those documents that
had more than twenty five queries attached as labels. This
biased the test set towards more popular documents but al-
lowed us to carry out large scale performance evaluation.
For Wikipedia, the label space was chosen to be the set of
Wikipedia categories, and each page was automatically la-
belled with the set of categories found at its bottom. The
test set was uniformly sampled and was not biased towards
the more popular Wikipedia pages.

Asking a team of human experts to measure relevance
might potentially sidestep some of the biases introduced by
automatically inferring ground truth labels from click logs.
However, human judgements are expensive and it is often
not possible to obtain them at large scale. Therefore, we
also carried out evaluations on a uniformly sampled smaller
test set of five hundred documents where performance was
assessed by a team of three human experts judging the rel-
evance of the recommendations to the given documents.

5.2 Algorithms and parameters
We compared the performance of MLRF and MLRF+SSL

to KEX [46] (which was discussed in Section 2). KEX’s ma-
jor limitation was that it could only recommend those bid
phrases that were present on the web page. This shortcom-
ing was addressed in [32] using a monolingual translation
model for candidate bid phrase expansion. We could not
compare MLRF+SSL to [32] directly since their code is not
available and no results have been published on a publically
available data set. We therefore expanded KEX’s candi-
date bid phrases using a research variant of Microsoft’s bid
phrase expansion engine referred to as KSP. KSP is a meta-
algorithm which combines many state-of-the-art techniques
for expanding a seed set of bid phrases based on how users
rewrite queries in a session, co-click and co-bid information,
etc. Note that, since MLRF doesn’t rely on any of these
signals, KSP could be used to expand the set of bid phrases
recommended by MLRF as well even though MLRF is al-
ready capable of recommending bid phrases not present on
the web page.

A hundred trees were learnt in MLRF’s random forest for
each data set. Care was taken to avoid over fitting and to
ensure that the learnt trees were not lopsided. Trees were
grown until each leaf node had no more than a thousand
data points. We also investigated whether our multi-label
sparse SSL formulation could mitigate the effect of biases
introduced during automatic training set generation. The
similarity matrix W was obtained from our click logs rather
than being computed from feature vectors. In particular,
Wij was set to be the total number of queries which resulted
in a click on both document i and document j while β was



(a) Geico Insurance (b) Dominos Pizza

(c) MetLife Insurance (d) Vistaprint Custom T-Shirts

(e) KCS Flowers (f) Simone and Sylvia’s Kid’s Clothing

(g) Mr Electic (h) Wanta Thai Restaurant

Figure 1: Phrase recommendations by KEX+KSP and MLRF+SSL: KEX+KSP did not recommend any
phrases for (a) and (b) and produced poor recommendations for (c)-(g). MLRF+SSL recommended good
phrases for (a)-(g) but failed for (h). See text for details. Figure best viewed under high magnification.



Data Set
Click Labels (%) Human Verification(%)

KEX KEX MLRF MLRF MLRF+ KEX KEX MLRF MLRF MLRF+
+KSP +SSL SSL+KSP +KSP +SSL SSL+KSP

Wikipedia 11.63 10.81 15.72 18.53 18.01 17.51 22.14 24.46 27.17 31.48
Ads1 11.96 12.38 18.13 19.88 21.54 41.95 43.27 45.86 47.53 51.08
Web 18.42 19.88 22.51 25.32 26.66 47.69 48.13 50.47 51.83 53.69
Ads2 12.45 14.35 15.91 17.12 19.24 36.69 40.07 41.28 43.78 46.77

Table 3: Automatic and human evaluation using precision at 10 for phrase recommendation (larger numbers
are better). MLRF+SSL was found to be about 5% better than KEX on the Ads data sets according to both
automatic and human evaluation. Expanding the recommendations using KSP improved the absolute perfor-
mance of both methods but the difference in performance between the multi-label and the ranking approach
remained around 5% for automatic evaluation and around 4% for human evaluation. Note that precision val-
ues were computed for only those documents for which KEX was able to generate recommendations otherwise
the difference in performance would have been even greater.

set to 0.6 and the sparsity factor L was set to twice the
number of total positive labels in the data set.

5.3 Metrics
The notion of what constitutes a good prediction changes

when moving from thousands of labels to millions of labels.
Establishing relevance or irrelevance is no longer as straight-
forward. Competing requirements of diversity, specificity
and succinctness also come into play. Performance evalua-
tion is further complicated by the fact that relevant labels
might be missing in the ground truth annotations. It can
be shown that there do not exist performance metrics which
are invariant to missing labels. However, one can come up
with metrics, such as precision, where the loss incurred for
predicting the ground truth labels for a given data point is
no greater than any other set of labels even when labels are
missing from the ground truth.
Most of the previous studies have recommended evaluat-

ing bid phrase suggestions using precision and the edit dis-
tance at the word level [32, 46]. We therefore report results
using both metrics for automated evaluation on our large
scale test sets. We also carry out a human evaluation where
the predictions for various methods were passed on to an
external team of 3 human experts who judged whether the
predictions were relevant or not. We report the precision at
10 averaged over the 3 judgements per test point.

5.4 Results
MLRF recommended at least 100 bid phrases in almost

98% of the cases. KEX+KSP’s coverage was poorer– for in-
stance, it was only 82% on the Ads2 data set since it failed
to recommend any bid phrases in many cases. Tables 2 and
3 report results for the edit distance and precision at 10
on only those test points for which KEX+KSP returned at
least 10 predictions (the results for KEX+KSP would have
been worse if computed over all ads). The ordering of al-
gorithms is consistently that KEX < KEX+KSP < MLRF
< MLRF+SSL < MLRF+SSL+KSP for all modes of eval-
uation except on Wikipedia for which KSP has not been
tuned. MLRF+SSL was better than KEX by almost 15%
using the edit distance on the Ads data sets. The same
was true for MLRF+SSL+KSP as compared to KEX+KSP.
The differences in performance were slightly lower in terms
of precision at 10. MLRF+SSL was found to be about 5%
better than KEX on the Ads data sets according to both
automatic and human evaluation. Expanding the recom-

mendations using KSP improved the absolute performance
of both methods. KSP improved KEX’s recommendations
by bringing in words not present on the given web page.
KSP also helped expand MLRF+SSL’s recommendations by
leveraging orthogonal training data. The difference in per-
formance between the multi-label and the ranking approach
remained around 5% for automatic evaluation and around
4% for human evaluation.

The results also indicated that our approach of training
MLRF on label beliefs inferred using the multi-label sparse
SSL formulation was beneficial. Performance on the Ads
data sets improved by 6% using the edit distance and by
1-2% using precision at 10.

The difference in the quality of bid phrase recommenda-
tions can be observed in Figure 1. KEX did not make any
recommendations for Geico and Domino’s. We found many
premium ad landing pages to be predominantly image or an-
imation based and what appeared to be text on these pages
was actually embedded images. As a result, KEX would
make very few predictions, sometimes even none, as its bi-
nary classifier was restricted to evaluating a very small set
of phrases which might not ultimately pass the recommen-
dation threshold. On the other hand, MLRF+SSL found
enough signal in the simple bag-of-words features extracted
from the raw HTML to make good bid phrase recommen-
dations. This demonstrates that MLRF is innately able to
recommend phrases not present on the page. Furthermore,
without any hand crafting, MLRF picked up the common
trick of recommending a competitor’s bid phrases. For in-
stance, it recommended that Geico bid on AllState’s phrase
(“all state car insurance coupon code”) and that MetLife
bid on “geico insurance” in order to garner more visibil-
ity for MetLife’s ad. Almost all of MLRF’s predictions
were good or borderline for MetLife’s ad whereas only 4
of KEX+KSP’s recommendations were good. The rest were
found to be poor and could potentially cause the advertiser
to lose money. The same was true for ads for Vistaprint
Custom T-Shirts, KCS Flowers, Simone & Sylvia’s Kid’s
Clothing and Mr. Electric. For instance, KEX latched on
to the irrelevant bid phrase “online business cards” from
Vistaprint’s website template. MLRF, on the other hand,
automatically learnt that business cards were not relevant
to ads for T-Shirts and instead focussed on recommend-
ing different types of T-Shirts. In addition, KEX+KSP
sometimes recommended fairly generic phrases such as“mas-
sachusetts”, “customizable” and “apparel” which might lead



to many clicks and exhaust the advertiser’s budget but lead
to few conversions. It also frequently recommended irrele-
vant phrases such as “call ahead’ and “own text”. MLRF’s
recommendations tended to be more specific, targeted and
relevant. Even in terms of diversity, MLRF’s predictions
could be much better than KEX+KSP’s, as can be seen by
the recommendations for KCS Flowers. KEX+KSP took a
rather morbid view and recommended only funeral related
bid phrases whereas MLRF also recommended flowers for
birthdays and valentines.

5.5 Limitations
By and large, our proposed multi-label MLRF learning ap-

proach was found to be better than the ranking based tech-
nique of KEX+KSP. However, MLRF also has some limita-
tions. In particular, MLRF is limited to suggesting phrases
from the set of 10 million training queries. While this set
is large enough to cover most of the commercially impor-
tant phrases, it doesn’t include new brand names and new
products from small businesses. We retrain MLRF+SSL fre-
quently to mitigate this fact and bring in new brand names
and products into our label set. More serious errors can
happen due to incorrect labels in the training set. For in-
stance, our predictions for the Wanta Thai Restaurant in
Figure 1 were quite poor. Many of the suggestions, partic-
ularly those beyond the top 10, were more relevant to an
Italian restaurant rather than a Thai restaurant. This can
be easily debugged in the random forest framework by trac-
ing the ad down to its leaf nodes and examining its nearest
neighbours. We found two sources of error. First, a few
Italian restaurant ads had been mislabelled as Thai restau-
rants during training and were therefore ending up in the
same leaf node as Thai restaurants and contributing Italian
restaurant labels. The second source of error was an ad for
a half Thai-half Italian restaurant.

6. CONCLUSIONS
We posed the problem of recommending bid phrases from

a given ad landing page as a supervised multi-label learning
task with millions of labels. Each label, in our formula-
tion, corresponds to a separate bid phrase. We developed
a novel multi-label random forest classifier with prediction
costs that are logarithmic in the number of labels while
avoiding feature and label space compression. This enabled
us to efficiently carry out fine grained bid phrase recommen-
dation in a few milliseconds using 10 Gb of RAM. Our node
splitting criterion learns from positive data alone allowing
us to train non-linear classifiers from large data sets with 90
million training points, 10 million labels and 6 million fea-
tures. We developed distributed training algorithms which
parallelize efficiently over a thousand nodes each having only
2Gb of RAM and which never need to load the feature or
label matrix into memory. As a result, we were able to train
our multi-label random forest classifier on a medium sized
cluster in less than a day. Standard generalization bounds
for our proposed classifier can readily be derived in terms
of the correlation between the trees in the forest and the
prediction accuracy of individual trees.
Training data for our classifier was mined automatically

from the click logs. This introduced various types of bi-
ases into the training set including numerous missing, and a
few incorrect, labels for each ad landing page. We therefore
infer beliefs in the state of each label using a novel sparse

semi-supervised multi-label learning formulation. The for-
mulation is optimized via an iterative hard thresholding al-
gorithm, for which a straightforward proof of convergence
can be derived, and which is orders of magnitude faster
than competing state-of-the-art greedy co-ordinate descent
strategies at our scale. We then extend our MLRF formu-
lation to train on the inferred beliefs in the state of each
label and show that this leads to better bid phrase recom-
mendations as compared to the standard supervised learning
paradigm of directly training on the given labels.

We evaluated the bid phrase recommendations of our multi-
label random forest classifier on a test set of 5 million ads.
We demonstrated that our proposed MLRF technique has
many advantages over ranking based methods such as KEX.
In particular, unlike KEX, MLRF can recommend bid phrases
not present on the ad landing page. This can be particularly
helpful while dealing with ad landing pages that are text
impoverished. MLRF’s recommendations can also be signif-
icantly better as its high capacity classifier can potentially
learn a much richer model of the relationship between ad
landing pages and relevant bid phrases. Monolingual trans-
lation models and query expansion techniques, such as KSP,
bring in complementary information and can be used to im-
prove the recommendations of both MLRF and KEX.

In conclusion, this paper demonstrates that bid phrase
recommendation can be posed as a multi-label learning task
and that learning with millions of labels can be made tractable
and accurate. Our formulation is general and offers a poten-
tially different way of thinking about query recommendation
problems in search and advertising.
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