Extreme Multi-label Loss Functions for Recommendation, Tagging, Ranking & Other Missing Label Applications -Supplementary

Himanshu Jain IIT Delhi

Yashoteja Prabhu IIT Delhi himanshu.j689@gmail.com vashoteja.prabhu@gmail.com manik@microsoft.com

Manik Varma Microsoft Research

1. PROPENSITY SCORED LOSSES

THEOREM 4.1. The loss function $\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}})$ evaluated on the observed ground truth \mathbf{y} is an unbiased estimator of the true loss function $\mathcal{L}^*(\mathbf{y}^*, \hat{\mathbf{y}})$ evaluated on complete ground truth \mathbf{y}^* . Thus, $\mathbb{E}_{\mathbf{y}}[\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}})] = \mathbb{E}_{\mathbf{y}^*}[\mathcal{L}^*(\mathbf{y}^*, \hat{\mathbf{y}})]$, for any $P(\mathbf{y}^*)$ and $P(\mathbf{y})$ related through propensities p_l and any fixed $\hat{\mathbf{y}}$.

PROOF.

$$\mathbb{E}_{\mathbf{y}}[\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}})] = \sum_{\mathbf{y} \in \{0, 1\}^L} \mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) P(\mathbf{y})$$
(1)

$$=\sum_{l=1}^{L}\sum_{\mathbf{y}\in\{0,1\}^{L}}\frac{\mathcal{L}_{l}^{*}(y_{l},\hat{y}_{l})}{p_{l}}P(y_{1}\ldots y_{L})$$
(2)

Since the loss function $\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}})$ decomposes over labels, $P(\mathbf{y})$ also decomposes. Assuming $S = \{y_1 \dots y_L\} \setminus \{y_l\}$

$$\mathbb{E}_{\mathbf{y}}[\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}})] = \sum_{l=1}^{L} \sum_{\mathbf{y} \in \{0,1\}^{L}} \frac{\mathcal{L}_{l}^{*}(y_{l}, \hat{y}_{l})}{p_{l}} P(\mathcal{S}|y_{l}) P(y_{l})$$
(3)

$$= \sum_{l=1}^{L} \sum_{y_l \in \{0,1\}} \frac{\mathcal{L}_l^*(y_l, \hat{y}_l)}{p_l} P(y_l) \sum_{\mathcal{S}} P(\mathcal{S}|y_l)$$
(4)

$$=\sum_{l=1}^{L}\sum_{y_{l}\in\{0,1\}}\frac{\mathcal{L}_{l}^{*}(y_{l},\hat{y}_{l})}{p_{l}}P(y_{l})$$
(5)

Since $\mathcal{L}_l^*(y_l, \hat{y}_l) = 0$ if $y_l = 0$

$$=\sum_{l=1}^{L} \frac{\mathcal{L}_{l}^{*}(y_{l}=1,\hat{y}_{l})}{p_{l}} P(y_{l}=1)$$
(6)

$$=\sum_{l=1}^{L} \frac{\mathcal{L}_{l}^{*}(y_{l}=1,\hat{y}_{l})}{p_{l}} \Big(P(y_{l}=1|y_{l}^{*}=1) P(y_{l}^{*}=1)$$

$$+ \underline{P(y_l = 1 | y_l^* = 0) P(y_l^* = 0)}$$
(7)

(Label noise is assumed to be one sided)

$$\mathbb{E}_{\mathbf{y}}[\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}})] = \sum_{l=1}^{L} \mathcal{L}_{l}^{*}(1, \hat{y}_{l}) P(y_{l}^{*} = 1)$$
(8)

$$=\sum_{l=1}^{L} \left(\mathcal{L}_{l}^{*}(1,\hat{y}_{l})P(y_{l}^{*}=1) + \mathcal{L}_{l}^{*}(0,\hat{y}_{l})P(y_{l}^{*}=0) \right)$$
(9)

$$=\sum_{l=1}^{L}\sum_{y_{l}^{*}\in\{0,1\}}\mathcal{L}_{l}^{*}(y_{l}^{*},\hat{y}_{l})P(y_{l}^{*})$$
(10)

$$=\sum_{\mathbf{y}^{*}}\mathcal{L}^{*}(\mathbf{y}^{*},\hat{\mathbf{y}})P(\mathbf{y}^{*})$$
(11)

$$= \mathbb{E}_{\mathbf{y}^*} [\mathcal{L}^*(\mathbf{y}^*, \hat{\mathbf{y}})]$$
(12)

THEOREM 4.2. If $P(\mathbf{y}^*)$ is a delta function then $\mathbb{E}_{\mathbf{y}}[\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}})] =$ $\mathbb{E}_{\mathbf{y}^*}[\mathcal{L}^*(\mathbf{y}^*,\hat{\mathbf{y}})]$ for non-decomposable loss functions of the form $\mathcal{L}^*(\mathbf{y}^*, \hat{\mathbf{y}}) = \sum_{l:y_l^*=1}^{L} \frac{\mathcal{L}_l^*(1, \hat{y}_l)}{g^*(\mathbf{y}^*, \hat{\mathbf{y}})} \text{ and } \mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = \sum_{l:y_l=1}^{L} \frac{\mathcal{L}_l^*(1, \hat{y}_l)}{g^*(\mathbf{y}^*, \hat{\mathbf{y}})p_l}$ with arbitrary propensities p_l .

Proof.

$$\mathbb{E}_{\mathbf{y}}[\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}})] = \sum_{\mathbf{y} \in \{0, 1\}^L} \sum_{l=1}^L \frac{\mathcal{L}_l^*(y_l, \hat{y}_l)}{g^*(\mathbf{y}^*, \hat{\mathbf{y}}) p_l} P(\mathbf{y})$$
(13)

Since $g^*(\mathbf{y}^*, \hat{\mathbf{y}})$ is not dependent on \mathbf{y} , following can be written

$$\mathbb{E}_{\mathbf{y}}[\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}})] = \frac{1}{g(\mathbf{y}^*, \hat{\mathbf{y}})} \sum_{\mathbf{y} \in \{0, 1\}^L} \sum_{l=1}^L \frac{\mathcal{L}_l^*(y_l, \hat{y}_l)}{p_l} P(\mathbf{y})$$
(14)

Following steps 3-8 from proof of Theorem 4.1

$$= \frac{1}{g(\mathbf{y}^*, \hat{\mathbf{y}})} \sum_{l=1}^{L} \mathcal{L}_l^*(1, \hat{y}_l) P(y_l^* = 1)$$
(15)

Since $P(\mathbf{y}^*)$ is a delta function, $P(y_l^* = 1) = 1$ if $y_l^* = 1$ and 0 otherwise. Also it is assumed that if $y_l^* = 0$, $\mathcal{L}_l^*(y_l^*, \hat{y}_l) = 0$

$$\mathbb{E}_{\mathbf{y}}[\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}})] = \frac{1}{g^*(\mathbf{y}^*, \hat{\mathbf{y}})} \sum_{l=1}^{L} \mathcal{L}_l^*(y_l^*, \hat{y}_l)$$
(16)
= $\mathcal{L}^*(\mathbf{y}^*, \hat{\mathbf{y}})$ (17)

COROLLARY 4.2.1. If $P(\mathbf{y}^*)$ is a delta function and labels are retained with propensities $p_l = g_l/g^*(\mathbf{y}^*)$, then $\mathbb{E}_{\mathbf{y}}[\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}})]$ $= \mathbb{E}_{\mathbf{y}^*}[\mathcal{L}^*(\mathbf{y}^*, \hat{\mathbf{y}})] \text{ for non-decomposable loss functions of the} \\ \text{form } \mathcal{L}^*(\mathbf{y}^*, \hat{\mathbf{y}}) = \sum_{l:y_l^*=1}^{L} \frac{\mathcal{L}_l^*(1, \hat{y}_l)}{g^*(\mathbf{y}^*)} \text{ and } \mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = \sum_{l:y_l=1}^{L} \frac{\mathcal{L}_l^*(1, \hat{y}_l)}{g_l}$

PROOF. From Theorem 4.2

$$\mathbb{E}_{\mathbf{y}^{*}}\left[\sum_{l:y_{l}^{*}=1}^{L}\frac{\mathcal{L}_{l}^{*}(1,\hat{y}_{l})}{g^{*}(\mathbf{y}^{*})}\right] = \mathbb{E}_{\mathbf{y}}\left[\sum_{l:y_{l}=1}^{L}\frac{\mathcal{L}_{l}^{*}(1,\hat{y}_{l})}{g^{*}(\mathbf{y}^{*})p_{l}}\right]$$
(18)

Putting $p_l = g_l/g^*(\mathbf{y}^*)$

$$= \mathbb{E}_{\mathbf{y}}\left[\sum_{l:y_l=1}^{L} \frac{\mathcal{L}_l^*(1,\hat{y}_l)}{g_l}\right]$$

THEOREM 4.3. (Concentration bound) Let $\mathbf{Y} = \{\mathbf{y}_i \in \{0,1\}^L\}_{i=1}^N$ be a set of N independent observed ground truth random variables. Then with probability at least $1 - \delta$ $\left|\mathbb{E}_{\mathbf{Y}}\left[\frac{1}{N}\sum_{i=1}^N \mathcal{L}(\mathbf{y}_i, \hat{\mathbf{y}}_i)\right] - \frac{1}{N}\sum_{i=1}^N \mathcal{L}(\mathbf{y}_i, \hat{\mathbf{y}}_i)\right| \leq \rho \bar{L} \sqrt{\frac{1}{2N} \log\left(\frac{2}{\delta}\right)}$ where $\rho = \max_{il}\left|\frac{1}{p_{il}}\frac{\mathcal{L}_i^*(y_{il}, \hat{y}_{il})}{g(\mathbf{y}_i^*, \hat{\mathbf{y}}_i)}\right|, \bar{L} = \sqrt{\frac{1}{N}\sum_{i=1}^N L_i^{*2}}$ and L_i^* is the maximum number of labels that can be relevant to a data point i in the complete ground truth.

PROOF. Change c_i , in the average loss function value when one of the N random variables $(\{\mathbf{y}_i\}_{i=1}^N)$ is changed is:

$$c_{i} = \frac{1}{N} \sum_{l=1}^{L} \left(\frac{\mathcal{L}_{l}^{*}(y_{il}, \hat{y}_{il})}{g(\mathbf{y}_{i}^{*}, \hat{\mathbf{y}}_{i})p_{il}} - \frac{\mathcal{L}_{l}^{*}(y_{il}', \hat{y}_{il})}{g(\mathbf{y}_{i}^{*}, \hat{\mathbf{y}}_{i})p_{il}} \right)$$
(19)

Since either of y_{il}, y'_{il} has to be zero, correspondingly the value of function \mathcal{L}_l^* will also be zero.

$$c_i \le \frac{1}{N} \sum_{l=1}^{L} \left(\frac{\mathcal{L}_l^*(y_{il}, \hat{y}_{il})}{g(\mathbf{y}_i^*, \hat{\mathbf{y}}_i) p_{il}} \right)$$
(20)

Note that for a given instance i, not all random variables $\{y_{il}\}_{l=1}^{L}$ can be changed because of one sided nature of noise i. e. random variables corresponding to only those instancelabel pairs can be changed for which $y_{il}^* = 1$. So assuming that L_i^* is the maximum number of labels relevant to an instance i then for that instance at max L_i^* random variables can be changed

$$c_i \leq \frac{L_i^*}{N}
ho \qquad \text{where }
ho = max_{il} \left| \frac{1}{p_{il}} \frac{\mathcal{L}_l^*(y_{il}, \hat{y}_{il})}{g(\mathbf{y}_i^*, \hat{\mathbf{y}}_i)}
ight|$$

Now using McDiarmid's Theorem, with probability at least $1-\delta$

$$\left| \mathbb{E}_{\mathbf{Y}} \left[\frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(\mathbf{y}_{i}, \hat{\mathbf{y}}_{i}) \right] - \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(\mathbf{y}_{i}, \hat{\mathbf{y}}_{i}) \right| \leq \sqrt{\frac{1}{2} \sum_{i=1}^{N} c_{i}^{2} \log\left(\frac{2}{\delta}\right)}$$
(21)
$$\leq \sqrt{\frac{\rho^{2}}{2N^{2}} \sum_{i=1}^{N} L_{i}^{*2} \log\left(\frac{2}{\delta}\right)}$$
(22)
$$= \rho \bar{L} \sqrt{\frac{1}{2N} \log\left(\frac{2}{\delta}\right)}$$
(23)

THEOREM 4.4. For any $P(\mathbf{y}^*)$ and $P(\mathbf{y})$ related through propensities p_l and any fixed $\hat{\mathbf{y}}$, $\mathbb{E}_{\mathbf{y}}[\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}})] = \mathbb{E}_{\mathbf{y}^*}[\mathcal{L}^*(\mathbf{y}^*, \hat{\mathbf{y}})]$ where $\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = \sum_{l=1}^{L} \left(\frac{1}{p_l}(1-2\hat{y}_l)\right) y_l + \hat{y}_l^2$ is an unbiased estimator of the Hamming loss $\mathcal{L}^*(\mathbf{y}^*, \hat{\mathbf{y}}) = \sum_l ||y_l^* - y_l||^2$ with concentration bound $\rho \bar{L} \sqrt{\frac{1}{2N} \log (2/\delta)}$ where $\rho = \max_{il} (1/p_{il})$.

Proof.

$$\mathbb{E}_{\mathbf{y}}[\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}})] = \mathbb{E}_{\mathbf{y}}\left[\sum_{l=1}^{L} \left(\frac{1}{p_l}(1 - 2\hat{y}_l)\right) y_l + \hat{y}_l^2\right]$$
(24)

Using steps 1-5 from Theorem 4.1, this can we written as

$$= \sum_{l=1}^{L} \sum_{y_l \in \{0,1\}} \left(\frac{1}{p_l} (1 - 2\hat{y}_l) y_l + \hat{y}_l^2 \right) P(y_l) \quad (25)$$
$$= \sum_{l=1}^{L} \left(\frac{1}{p_l} (1 - 2\hat{y}_l) + \hat{y}_l^2 \right) P(y_l = 1) + \hat{y}_l^2 P(y_l = 0)$$
$$(26)$$

$$=\sum_{l=1}^{L} \frac{1}{p_l} (1 - 2\hat{y}_l) P(y_l = 1) + \hat{y}_l^2$$
(27)
$$\sum_{l=1}^{L} \frac{1}{p_l} (1 - 2\hat{y}_l) P(y_l = 1) + \hat{y}_l^2$$
(27)

$$=\sum_{l=1}^{n} \frac{1}{p_l} (1 - 2\hat{y}_l) P(y_l = 1 | y_l^* = 1) P(y_l^* = 1) + \hat{y}_l^2$$
(28)

$$=\sum_{l=1}^{L} (1-2\hat{y}_l) P(y_l^*=1) + \hat{y}_l^2 (P(y_l^*=1) + P(y_l^*=0))$$
(29)

$$=\sum_{l=1}^{L} (1 - 2\hat{y}_l + \hat{y}_l^2) P(y_l^* = 1) + \hat{y}_l^2 P(y_l^* = 0)$$
(30)

$$=\sum_{l=1}^{L} (y_l^* - \hat{y}_l)^2 P(y_l^* = 1) + \hat{y}_l^2 P(y_l^* = 0) \quad (31)$$

$$= \sum_{l=1}^{L} \sum_{y_l \in \{0,1\}} (y_l^* - \hat{y}_l)^2 P(y_l^*)$$
(32)

$$= \mathbb{E}_{\mathbf{y}^*} \left[\sum_{l=1}^{L} (y_l^* - \hat{y}_l)^2 \right]$$
(33)

Concentration bound

Change c_i , in the average hamming loss value when one of the N random variables $(\{\mathbf{y}_i\}_{i=1}^N)$ is changed is

$$c_{i} = \frac{1}{N} \sum_{l=1}^{L} \left(\frac{1}{p_{il}} (1 - 2\hat{y}_{il}) y_{il} - \frac{1}{p_{il}} (1 - 2\hat{y}_{il}) y_{il}' \right)$$
(34)

Since either of y_{il}, y'_{il} has to be zero.

$$c_{i} \leq \frac{1}{N} \sum_{l=1}^{L} \frac{1}{p_{il}} (1 - 2\hat{y}_{il}) y_{il}$$
(35)

$$c_i \le \frac{L_i^*}{N}\rho \tag{36}$$

where $\rho = max_{il} \frac{1}{p_{il}}$ and L_i^* is the maximum number of labels relevant to an instance *i*

Now using McDiarmid's Theorem, with probability at least $1-\delta$

$$\left| \mathbb{E}_{\mathbf{Y}} \left[\frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(\mathbf{y}_{i}, \hat{\mathbf{y}}_{i}) \right] - \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(\mathbf{y}_{i}, \hat{\mathbf{y}}_{i}) \right| \le \rho \bar{L} \sqrt{\frac{1}{2N} \log\left(\frac{2}{\delta}\right)}$$
(37)

Table 1: The proposed PfastreXML and PfastXML algorithms make significantly more accurate predictions as compared to state-of-the-art SLEEC, FastXML and other baseline algorithms. PfastreXML's predictions are more accurate than PfastXML's with negligible training and prediction overheads. Performance is evaluated according to Precision@k (Pk) and nDCG@k (Nk) for k = 1, 3 and 5.

(a) EUR-Lex N = 15K, D = 5K, L = 4K

Algorithm	N1(%)	N3(%)	N5(%)	P1(%)	P3(%)	P5(%)
Popularity	6.69	6.10	5.94	6.69	5.88	5.48
1-vs-All	79.89	69.62	63.04	79.89	66.01	53.80
SLEEC	79.94	69.40	63.16	79.94	65.84	54.19
LEML	63.40	53.56	48.47	63.40	50.35	41.28
WSABIE	68.55	58.44	53.03	68.55	55.11	45.12
CPLST	72.28	61.64	55.92	72.28	58.16	47.73
CS	58.52	48.67	40.79	58.52	45.51	32.47
ML-CSSP	62.09	51.63	47.11	62.09	48.39	40.11
FastXML	72.35	64.03	58.93	72.35	61.19	51.24
LPSR	76.37	66.63	60.61	76.37	63.36	52.03
PfastreXML	76.11	66.99	61.48	76.11	63.92	53.24

(b) AmazonCat-13K ${\cal N}=1.18M, D=203K, L=13K$

Algorithm	N1(%)	N3(%)	N5(%)	P1(%)	P3(%)	P5(%)
Popularity	29.88	23.54	22.57	29.88	18.78	14.86
SLEEC	90.53	84.96	82.77	90.53	76.33	61.52
FastXML	93.05	87.02	85.11	93.05	78.16	63.37
PfastreXML	93.01	87.03	85.14	93.01	78.19	63.42

(c) Wiki10-31K N = 14K, D = 101K, L = 31K

()			· ·			
Algorithm	N1(%)	N3(%)	N5(%)	P1(%)	P3(%)	P5(%)
Popularity	18.18	15.77	14.31	18.18	15.13	13.29
SLEEC	80.18	67.84	59.60	80.18	64.25	53.68
FastXML	69.70	58.53	52.01	69.70	55.27	47.06
PfastreXML	71.71	61.78	55.57	71.71	58.92	50.98
$\frac{(d) \text{ WikiLSE}}{\text{Algorithm}}$	HTC-325 N1(%)	$M = \frac{1}{N3(\%)}$	1.78M, N5(%)	$D = 1.0$ $\overline{P1(\%)}$	$52M, L = \overline{P3(\%)}$	$= 325K$ $\overline{P5(\%)}$
Popularity	15.88	8.40	7.04	15.88	6.03	3.80
SLEEC	54.84	47.25	46.16	54.84	33.43	23.86
FastXML	49.88	45.30	44.81	49.88	33.15	24.47
PfastreXML	57.24	50.98	50.49	57.24	36.58	26.85

(e) Amazon-670K N = 490K, D = 136K, L = 670K

Algorithm	N1(%)	N3(%)	N5(%)	P1(%)	P3(%)	P5(%)
Popularity	0.28	0.27	0.25	0.28	0.27	0.23
SLEEC	34.61	32.71	31.57	34.61	30.88	28.27
FastXML	36.90	35.09	33.87	36.90	33.27	30.54
PfastreXML	38.86	37.45	36.51	38.86	35.52	32.93

(f)	Ads-9M	N =	70.45M,	D =	2.08M,	L =	8.84M
-----	--------	-----	---------	-----	--------	-----	-------

Algorithm	N1(%)	N3(%)	N5(%)	P1(%)	P3(%)	P5(%)
Popularity	0.05	0.08	0.09	0.05	0.09	0.12
FastXML	6.18	6.72	6.94	6.18	6.99	7.42
PfastXML	6.60	7.10	7.32	6.60	7.37	7.76
PfastreXML	8.75	9.87	10.28	8.75	10.45	11.20

2. PfastreXML DERIVATIONS

Let N, D, L be the number of training points, features and labels respectively in the training set. Let $\mathbf{x}_i \in \mathcal{R}^D, \mathbf{y}_i \in \{0, 1\}^L, \mathbf{y}_i^* \in \{0, 1\}^L$ denote the feature vector; incomplete, observed label vector; and complete, unobserved label vector respectively of the *i*th point.

Algorithm 1 FastXML-PREDICT($\{\mathcal{T}_1, .. \mathcal{T}_T\}, \mathbf{x}$)

for $i = 1,, T$ do
$n \leftarrow \mathcal{T}_i.\mathrm{root}$
while n is not a leaf do
$\mathbf{w} \leftarrow n.\mathbf{w}$
$\mathbf{if} \ \mathbf{w}^\top \mathbf{x} > 0 \ \mathbf{then}$
$n \leftarrow n. ext{left_child}$
else
$n \leftarrow n.right_child$
end if
end while
$\mathbf{P}_i^{\text{leaf}}(\mathbf{x}) \leftarrow n. \mathbf{P}$ #Label probabilities in leaf node n
end for
$\mathbf{Q} = \frac{1}{T} \sum_{i=1}^{T} \mathbf{P}_{i}^{\text{leaf}}(\mathbf{x})$
return Q

Algorithm	2	PfastreXML-TRAIN	(•	$\{\mathbf{x}_i, \mathbf{y}_i\}$	$\binom{N}{i}$	$_{-1}^{V}$, p ,	T)
-----------	----------	------------------	----	----------------------------------	----------------	--------------------------	----

Require: $\{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^N$: Training set

 $\{\mathbf{x}_{i}, \mathbf{y}_{i}\}_{i=1}^{n}$ framing set **p**: Propensities **T**: Number of trees **for** i = 1, ..., N **do for** l = 1, ..., L **do** $y_{il}^{p} = y_{il}/p_{il}$ **end for end for** $\{\mathcal{T}_{1}, ..., \mathcal{T}_{T}\} = \text{FASTXML-TRAIN}(\{\mathbf{x}_{i}, \mathbf{y}_{i}^{p}\}_{i=1}^{N}, T)$ # Call Algorithm 1 in (?) **for** l = 1, ..., L **do** $\mu_{l} = \frac{\sum_{i=1}^{N} y_{il} \mathbf{x}_{i}}{\sum_{i=1}^{N} y_{il}}$ **end for return** $\{\mathcal{T}_{1}, ..., \mathcal{T}_{T}\}, \{\mu_{1}, ..., \mu_{L}\}$

2.1 Tail label classifiers

We model the decision boundary for each label as a compact hyperspherical surface. Next, we assume conditional independence of labels given a feature vector, thus simplifying the parameter estimation problem into L independent and much smaller maximum likelihood estimation (MLE) problems. Finally, we assume $y_{il} \perp \perp \mathbf{x}_i | y_{il}^*$ and the previously stated hyperspherical models to derive the final expressions for MLE.

Maximum likelihood estimation:

Let $\{\mu_j\} = \{\mu_1, .., \mu_L\}$ be the parameters of our model, whose values need to be estimated.

The MLE objective can be stated and simplified as follows:

$$\{\boldsymbol{\mu}_{j}^{*}\} = \arg \max_{\{\boldsymbol{\mu}_{j}\}} \prod_{i=1}^{N} P(\mathbf{y}_{i} | \mathbf{x}_{i}; \{\boldsymbol{\mu}_{j}\})$$
$$= \arg \max_{\{\boldsymbol{\mu}_{j}\}} \prod_{i=1}^{N} \prod_{l=1}^{L} P(y_{il} | \mathbf{x}_{i}; \boldsymbol{\mu}_{l})$$
$$\boldsymbol{\mu}_{l}^{*} = \arg \max_{\boldsymbol{\mu}_{l}} \prod_{i=1}^{N} P(y_{il} | \mathbf{x}_{i}; \boldsymbol{\mu}_{l}) \quad \forall l \in \{1, .., L\}$$
(38)

 $\begin{aligned} \mathbf{Q} &= \text{FASTXML-PREDICT}(\{\mathcal{T}_1, ..\mathcal{T}_T\}, \mathbf{x}) \\ \mathbf{P} &= \mathbf{0} \\ \text{for } l \in \{l' : Q_{l'} > 0\} \text{ do} \\ P_l &= \frac{1}{1 + \exp(\frac{\gamma}{2} \|\mathbf{x} - \boldsymbol{\mu}_l\|^2)} \\ s_l &= \alpha \log(Q_l) + (1 - \alpha) \log(P_l) \\ \text{end for} \\ \mathbf{r} &= \operatorname{rank}_k (\mathbf{s}) \qquad \# \text{ From Eqn.1 in } (?) \\ \text{return } \mathbf{r}, \mathbf{s} \end{aligned}$

where, we have used the assumption of conditional independence over labels to arrive at L smaller and independent problems.

By marginalizing y_{il}^* from the joint distribution over y_{il}, y_{il}^* , we get the following:

$$P(y_{il}|\mathbf{x}_{i};\boldsymbol{\mu}_{l}) = \sum_{y_{il}^{*}=0}^{1} P(y_{il}, y_{il}^{*}|\mathbf{x}_{i}; \boldsymbol{\mu}_{l})$$

$$= \sum_{y_{il}^{*}=0}^{1} P(y_{il}|y_{il}^{*}, \mathbf{x}_{i}) P(y_{il}^{*}|\mathbf{x}_{i}; \boldsymbol{\mu}_{l}) \quad (\because \text{ chain rule})$$

$$= \sum_{y_{il}^{*}=0}^{1} P(y_{il}|y_{il}^{*}) P(y_{il}^{*}|\mathbf{x}_{i}; \boldsymbol{\mu}_{l}) \quad (\because y_{il} \perp \mathbf{x}_{i}|y_{il}^{*})$$

(39)

Let $p_{il} = P(y_{il} = 1 | y_{il}^* = 1)$ denote the propensity of label l for point i. Due to one-sided label noise, $(y_{il} = 1) \implies (y_{il}^* = 1)$. Using these observations:

$$P(y_{il}|y_{il}^{*}) = \mathbb{1}(y_{il}^{*} = 1) \left(p_{il} \mathbb{1}(y_{il} = 1) + (1 - p_{il}) \mathbb{1}(y_{il} = 0) \right) + \mathbb{1}(y_{il}^{*} = 0) \left(0\mathbb{1}(y_{il} = 1) + 1\mathbb{1}(y_{il} = 0) \right) = y_{il}^{*} \left(p_{il}y_{il} + (1 - p_{il})(1 - y_{il}) \right) + (1 - y_{il}^{*})(1 - y_{il}) = (1 - y_{il}) + p_{il}y_{il}^{*}(2y_{il} - 1)$$
(40)

We learn compact hyperspherical decision boundaries for each label independently, according to:

$$P(y_{il}^* | \mathbf{x}_i; \boldsymbol{\mu}_i) = 1/(1 + v_{il}^{2y_{il}^* - 1})$$
(41)
where $v_{il} = \beta e^{\frac{\gamma}{2} \|\mathbf{x}_i - \boldsymbol{\mu}_l\|^2}$

Substituting the results 40, 41 into 39 followed by some simplification, we get:

$$P(y_{il}|\mathbf{x}_i; \boldsymbol{\mu}_l) = (1 - y_{il}) + \frac{p_{il}(2y_{il} - 1)}{1 + v_{il}}$$
(42)

We use 42 in 38, and take logarithm of probabilities as

follows:

$$\mu_{l}^{*} = \arg \max_{\mu_{l}} \sum_{i=1}^{N} \log \left(P(y_{il} | \mathbf{x}_{i}; \mu_{l}) \right)$$

$$= \arg \max_{\mu_{l}} \sum_{i=1}^{N} \log \left((1 - y_{il}) + \frac{p_{il}(2y_{il} - 1)}{1 + v_{il}} \right)$$

$$= \arg \max_{\mu_{l}} O_{l}$$
where, $O_{l} = \sum_{i=1}^{N} \log \left((1 - y_{il}) + \frac{p_{il}(2y_{il} - 1)}{1 + v_{il}} \right)$ (43)

2.2 Optimization

Eqn 43 can be solved by usual gradient descent techniques. In this section, we derive the expression for gradient of 43.

Taking derivative of O_l w.r.t μ_l :

$$\nabla_{\mu_{l}}O_{l} = \sum_{i=1}^{N} \nabla_{\mu_{l}} \log((1-y_{il})(1+v_{il}) + p_{l}(2y_{il}-1)) - \nabla_{\mu_{l}} \log(1+v_{il}) = \sum_{i=1}^{N} \left(\frac{1-y_{il}}{(1-y_{il})(1+v_{il}) + p_{l}(2y_{il}-1)} - \frac{1}{1+v_{il}}\right) \nabla_{\mu_{l}}v_{il} = \sum_{i=1}^{N} \left(\frac{1-y_{il}}{(1-y_{il})(1+v_{il}) + p_{l}(2y_{il}-1)} - \frac{1}{1+v_{il}}\right) (-\gamma v_{il}(\mathbf{x}_{i}-\mu_{l}))$$
(44)

Since the derivative at the optimum must vanish:

$$\nabla_{\boldsymbol{\mu}_{l}^{*}}O_{l} = \mathbf{0}$$

$$\sum_{i=1}^{N} \gamma u_{il}(\mathbf{x}_{i} - \boldsymbol{\mu}_{l}^{*}) = \mathbf{0}$$

where,

$$u_{il} = \left(\frac{1 - y_{il}}{(1 - y_{il})(1 + v_{il}) + p_l(2y_{il} - 1)} - \frac{1}{1 + v_{il}}\right) v_{il} \quad (45)$$

$$\implies \boldsymbol{\mu}_{l}^{*} = \frac{\sum_{i=1}^{N} u_{il} \mathbf{x}_{i}}{\sum_{i=1}^{N} u_{il}}$$
(46)

2.3 Approximation

Gradient descent techniques do not scale to millions of label, and hence in this section we present an approximate but much faster solution to 43.

We assume the following:

$$\exists \Delta \in \mathcal{R}, \quad \|\mathbf{x}_i - \boldsymbol{\mu}_l\| \ge \Delta > 0 \quad \forall i \in \{1, .., N\}$$
 and (47)

$$\gamma \gg \frac{-2\log(\beta)}{\Delta^2} \tag{48}$$

Above assumptions imply that:

$$\gamma \|\mathbf{x}_{i} - \boldsymbol{\mu}_{l}\|^{2} \ge \Delta^{2} \lambda$$

$$\gg -2 \log(\beta)$$

$$\implies v_{il} = \beta \exp(\frac{\lambda}{2} \|\mathbf{x}_{i} - \boldsymbol{\mu}_{l}\|^{2}) \gg 1 \quad \forall i \in \{1, ..., N\}$$
(49)

Using the above result, we can simplify u_{il} in 45:

$$y_{il} = 1 \implies u_{il} = \frac{v_{il}}{1 + v_{il}}$$

$$\sim 1 \quad (\text{from 49})$$

$$y_{il} = 0 \implies u_{il} = \frac{v_{il}}{1 + v_{il}} - \frac{v_{il}}{1 + v_{il} - p_l}$$

$$\sim 1 - 1 = 0 \quad (\text{from 49})$$

Hence,

$$u_{il} \sim y_{il} \ \Longrightarrow \ oldsymbol{\mu}_l^st \sim rac{\sum_{i=1}^N y_{il} \mathbf{x}_i}{\sum_{i=1}^N y_{il}}$$