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1. PROPENSITY SCORED LOSSES

THEOREM 4.1. The loss function L(y,¥) evaluated on the
observed ground truth y is an unbiased estimator of the true
loss function L*(y*,¥y) evaluated on complete ground truth
y". Thus, By[L(y,¥)] = Ey«[L"(y",¥)], for any P(y”) and
P(y) related through propensities p; and any fized y.

Proor.
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(Label noise is assumed to be one sided)
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THEOREM 4.2. If P(y™) is a delta function then Ey[L(y,y)] =

Ey«[L*(y*,¥)] for non—decomposable loss functions of the
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PROOF.
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Since ¢*(y*,y) is not dependent on y, following can be writ-
ten
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Following steps 3-8 from proof of Theorem
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Since P(y™) is a delta function, P(y; = 1) =1if y/ =1 and
0 otherwise. Also it is assumed that if y;" = 0, £} (y;', %) =0
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COROLLARY 4.2.1. If P(y™) is a delta function and labels
are retained with propensities pr = g1/g"* (y*), then Ey [L(y,¥)]
=Ey=[L*(y",¥)] for non- decomposable loss functions of the
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form L*(y*,y) = Zl = £il y’) and L(y,y) = Zszy,:1 %.
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Putting p; = g1/9* (y*)
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THEOREM 4.3. (Concentration bound) Let Y = {y; €
{0,1}23Y, be a set of N independent observed ground truth
random variables. Then with probability at least 1 — §
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is the maximum number of labels that can be relevcmt to a
data point i in the complete ground truth.

where p = max;

Proor. Change c;, in the average loss function value
when one of the N random variables ({y;}iL,) is changed is:
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Since either of y;,%;, has to be zero, correspondingly the
value of function £] will also be zero.

L
Z ([/l ylhyzl )
9(y:.¥:)pa

(20)

Note that for a given instance 4, not all random variables
{yil}le can be changed because of one sided nature of noise
i. e. random variables corresponding to only those instance-
label pairs can be changed for which yj; = 1. So assuming
that Lj is the maximum number of labels relevant to an
instance ¢ then for that instance at max L] random variables
can be changed
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Now using McDiarmid’s Theorem, with probability at least
1-96
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THEOREM 4.4. For any P(y
propensities p; and any fired y, E,
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estimator of the Hamming loss L*(y*,y) =
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Using steps 1-5 from Theorem this can we written as
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Concentration bound
Change ¢;, in the average hamming loss value when one of
the N random variables ({y;}X;) is changed is
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Table 1: The proposed PfastreXML and PfastXML algo-
rithms make significantly more accurate predictions as com-
pared to state-of-the-art SLEEC, FastXML and other base-
line algorithms. PfastreXML’s predictions are more accu-
rate than PfastXML’s with negligible training and predic-
tion overheads. Performance is evaluated according to Pre-
cision@k (Pk) and nDCG@k (Nk) for k£ = 1,3 and 5.

(a) EUR-Lex N =15K,D =5K,L = 4K

Algorithm  N1(%) N3(%) N5(%) Pi(%) P3(%) P5(%)

Popularity 6.69 6.10 5.94 6.69 5.88 5.48
1-vs-All 79.89  69.62 63.04  79.89 66.01 53.80
SLEEC 79.94 69.40 63.16 7994 65.84 54.19
LEML 63.40 53.56 48.47 6340  50.35  41.28
WSABIE 68.55 58.44 53.03 68.55 55.11  45.12
CPLST 72.28 61.64 55.92  72.28  58.16  47.73
CS 58.52 48.67 40.79  58.52  45.51  32.47
ML-CSSP 62.09 51.63 47.11 62.09  48.39  40.11
FastXML 72.35 64.03 58.93 7235 61.19  51.24
LPSR 76.37  66.63 60.61 76.37 63.36  52.03

PfastreXML 76.11 66.99 61.48 76.11  63.92  53.24

(b) AmazonCat-13K N = 1.18 M, D = 203K, L = 13K

Algorithm  N1(%) N3(%) N5(%) PL(%) P3(%) P5(%)

Popularity 29.88 23.54 22.57  29.88 18.78 14.86
SLEEC 90.53 84.96 82.77  90.53  76.33  61.52
FastXML 93.05 87.02 85.11 93.05 78.16  63.37

PfastreXML 93.01 87.03 85.14 93.01 7819 63.42

(c) Wikil0-31K N = 14K, D = 101K, L = 31K

Algorithm  N1(%) N3(%) N5(%) DPL(%) P3(%) P5(%)

Popularity 18.18 15.77 14.31 18.18 15.13 13.29
SLEEC 80.18 67.84 59.60 80.18 64.25 53.68
FastXML 69.70 58.53 52.01 69.70  55.27  47.06

PfastreXML 71.71 61.78  55.57  71.71  58.92  50.98

(d) WikiLSHTC-325K N = 1.78 M, D = 1.62M, L = 325K

Algorithm  N1(%) N3(%) N5(%) PL(%) P3(%) P5(%)
Popularity 15.88 8.40 7.04 15.88 6.03 3.80
SLEEC 54.84 47.25 46.16 54.84 33.43 23.86
FastXML 49.88 45.30 44.81 49.88 33.15 24.47
PfastreXML  57.24 50.98 50.49 57.24 36.58 26.85

(e) Amazon-670K N = 490K, D = 136K, L = 670K
Algorithm  N1(%) N3(%) N5(%) PL(%) P3(%) P5(%)

Popularity 0.28 0.27 0.25 0.28 0.27 0.23
SLEEC 34.61 32.71 31.57  34.61 30.88  28.27
FastXML 36.90 35.09 33.87  36.90 33.27  30.54

PfastreXML  38.86 37.45 36.51 38.86 35.52 32.93

(f) Ads-9M N = 70.45M, D = 2.08M, L = 8.84M
Algorithm  N1(%) N3(%) N5(%) PL(%) P3(%) P5(%)

Popularity 0.05 0.08 0.09 0.05 0.09 0.12
FastXML 6.18 6.72 6.94 6.18 6.99 7.42
PfastXML 6.60 7.10 7.32 6.60 7.37 7.76

PfastreXML 8.75 9.87 10.28 8.75 10.45 11.20

2. PfastreXML DERIVATIONS

Let N, D, L be the number of training points, features and
labels respectively in the training set. Let x; € R”,y; €
{0,1}*,y; € {0,1}" denote the feature vector; incomplete,
observed label vector; and complete, unobserved label vec-
tor respectively of the ith point.

Algorithm 1 FastXML-PREDICT({73,..77},x)

fori=1,..,T do
n < T;.root
while n is not a leaf do
W n.w
if w'x >0 then
n < n.left_child
else
n <— n.right_child
end if
end while
Pliea‘f(x) —nP
end for
Q=+3L, Pl(x)
return Q

#Label probabilities in leaf node n

Algorithm 2 PfastreXML-TRAIN({x;,y:},,p,T)

Require:
{xi,y:}L,: Training set
p: Propensities
T: Number of trees

fori=1,...,N do
for/=1,..,L do
yh = yi/pa
end for
end for
{T1,..,Tr} = FASTXML-TRAIN({x;,y?}}L,,T)
# Call Algorithm 1 in (7)
for=1,..,L do
N yax
K= sz\il Yil
end for
return {73, .., o}, {p1, ., i}

2.1 Tail label classifiers

We model the decision boundary for each label as a com-
pact hyperspherical surface. Next, we assume conditional
independence of labels given a feature vector, thus simpli-
fying the parameter estimation problem into L independent
and much smaller maximum likelihood estimation (MLE)
problems. Finally, we assume y;; 1l x;|y;; and the previously
stated hyperspherical models to derive the final expressions
for MLE.

Maximum likelihood estimation:

Let {p;} = {p1,.., ur} be the parameters of our model,
whose values need to be estimated.

The MLE objective can be stated and simplified as follows:
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Algorithm 3 PfastreXML-PREDICT({7:.. 77}, {pt1.-4L},

X, &, )
Q = FASTXML-PREDICT({T1,..Tr}, x)
P=0
forl e {l': Qu >0} do
P = .

Ttexp(F x—p]1?)

s = alog(Q1) + (1 — ) log(P,)
end for
r = ranky, (s)
return r,s

# From Eqn.1 in (7)

where, we have used the assumption of conditional inde-
pendence over labels to arrive at L smaller and independent
problems.

By marginalizing y;; from the joint distribution over y;;, y;;,
we get the following:

1
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Let pyy = P(ya = 1|y;; = 1) denote the propensity of label
[ for point i. Due to one-sided label noise, (yi = 1) =
(y5; = 1). Using these observations:

Plyaly) = Ly = 1) (paLlyu = 1) + (1 = pu)Llya = 0))
+ (i = 0) (0L (ya = 1) + 11 (ya = 0))
= yii(paya + (1 = p) (1 = ) + (1= i) (1 - )
= (1 = ya) + paya(2ya — 1) (40)

We learn compact hyperspherical decision boundaries for
each label independently, according to:

P(yilxis i) = 1/ (1403 (41)
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Substituting the results 0] ] into [39] followed by some
simplification, we get:
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P(yalxi; ) = (1 —y;
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We use in and take logarithm of probabilities as

follows:
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where, O; = i log | (1 —ya) + M (43)
— 14+ vy

2.2 Optimization

Eqn[d3]can be solved by usual gradient descent techniques.
In this section, we derive the expression for gradient of

Taking derivative of O; w.r.t p;:

N
Vu, O = ZVM log((1 — yat)(1 4+ vir) + pi(2yu — 1))

i=1

— Vi, log(1 4+ vy)
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Since the derivative at the optimum must vanish:
V“l* 0, =0

N

> yuwalxi — pi) =0

i=1

where,
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2.3 Approximation

Gradient descent techniques do not scale to millions of
label, and hence in this section we present an approximate
but much faster solution to

We assume the following:

JAER, |xi—w|l>A>0 Vie{l,.,N} (47)
and
—2log(B



Above assumptions imply that:

Yxi = ] > A%
> —2log(B)

A
= vy = ﬁexp(i\lxz- —wl>)>1 Vvie{l,.,N}
(49)

Using the above result, we can simplify u;; in

(%
g=1 = wu;; =
Yil U4l 1+'Uil
~1 (from [49)
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Hence,
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