
Extreme Multi-label Learning with Label Features for
Warm-start Tagging, Ranking & Recommendation

Yashoteja Prabhu∗
yashoteja.prabhu@gmail.com

Anil Kag†
anilkagak2@gmail.com

Shilpa Gopinath‡
shilpagopitvm@gmail.com

Kunal Dahiya∗
kunalsdahiya@gmail.com

Shrutendra Harsola†
shharsol@microsoft.com

Rahul Agrawal†
Rahul.Agrawal@microsoft.com

Manik Varma∗†
manik@microsoft.com

ABSTRACT
The objective in extreme multi-label learning is to build classifiers
that can annotate a data point with the subset of relevant labels from
an extremely large label set. Extreme classification has, thus far,
only been studied in the context of predicting labels for novel test
points. This paper formulates the extreme classification problem
when predictions need to be made on training points with partially
revealed labels. This allows the reformulation of warm-start tag-
ging, ranking and recommendation problems as extrememulti-label
learning with each item to be ranked/recommended being mapped
onto a separate label. The SwiftXML algorithm is developed to
tackle such warm-start applications by leveraging label features.
SwiftXML improves upon the state-of-the-art tree based extreme
classifiers by partitioning tree nodes using two hyperplanes learnt
jointly in the label and data point feature spaces. Optimization is
carried out via an alternating minimization algorithm allowing
SwiftXML to efficiently scale to large problems.

Experiments on multiple benchmark tasks, including tagging on
Wikipedia and item-to-item recommendation on Amazon, reveal
that SwiftXML’s predictions can be up to 14% more accurate as
compared to leading extreme classifiers. SwiftXML also demon-
strates the benefits of reformulating warm-start recommendation
problems as extreme multi-label learning tasks by scaling beyond
classical recommender systems and achieving prediction accuracy
gains of up to 37%. Furthermore, in a live deployment for sponsored
search on Bing, it was observed that SwiftXML could increase the
relative click-through-rate by 10% while simultaneously reducing
the bounce rate by 30%.

∗Indian Institute of Technology Delhi
†Microsoft Research and AI
‡Samsung Research

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WSDM 2018, February 5–9, 2018, Marina Del Rey, CA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5581-0/18/02. . . $15.00
https://doi.org/10.1145/3159652.3159660

KEYWORDS
Extreme multi-label learning, Sponsored search, Large scale recom-
mender systems with user and item features

ACM Reference Format:
Yashoteja Prabhu, Anil Kag, Shilpa Gopinath, Kunal Dahiya, Shrutendra Har-
sola, Rahul Agrawal, and Manik Varma. 2018. Extreme Multi-label Learning
with Label Features for Warm-start Tagging, Ranking & Recommendation.
In WSDM 2018: WSDM 2018: The Eleventh ACM International Conference on
Web Search and Data Mining , February 5–9, 2018, Marina Del Rey, CA, USA.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3159652.3159660

1 INTRODUCTION
Objective: This paper studies extrememulti-label problemswhere

predictions need to be made on training points with partially re-
vealed labels rather than on previously unseen test points. The
SwiftXML algorithm is developed for learning in such scenarios
by exploiting both label and data point features and applied to
warm-start tagging, ranking and recommendation applications.

Extreme classification: Extrememulti-label learning addresses
the problem of learning a classifier that can annotate a data point
with the most relevant subset of labels from an extremely large
label set. Note that multi-label learning is distinct from multi-class
learning which aims to predict a single mutually exclusive label.

Extreme classification has opened up a new paradigm for think-
ing about applications such as tagging, ranking and recommenda-
tion. In general, one can reformulate these problems as extreme
classification tasks by treating each item to be ranked/recommended
as a separate label, learning an extreme multi-label classifier that
maps a user’s feature vector to a set of relevant labels, and then
using the classifier to predict the subset of items that should be
ranked/recommended to each user. Data points are therefore re-
ferred to as users and labels as items throughout this paper.

Unfortunately, extreme classification has thus far been studied
only in the cold-start context of recommending items to new users
(predicting labels for novel test points). As a result, existing extreme
classification algorithms have been based on user features alone
and have not exploited item features. They have therefore been
unable to leverage information about the revealed item preferences
of existing users available in warm-start scenarios.

https://doi.org/10.1145/3159652.3159660
https://doi.org/10.1145/3159652.3159660

Motivation and label features: This paper is motivated by the
applications of tagging on Wikipedia, item-to-item recommenda-
tion on Amazon and ranking queries for a given ad-landing page
for sponsored search on Bing. In the case of tagging Wikipedia arti-
cles, each Wikipedia tag is treated as a separate label and the tag’s
word2vec embedding is treated as its label feature vector. SwiftXML
is then used to predict new tags for an existing article leveraging in-
formation about not only the article’s text but also the existing tags
for the article. For item-to-item recommendation on Amazon, each
item is treated as a separate label and bag-of-words label features
are extracted based on the product description. SwiftXML is then
used to recommend other items that might be bought along with a
given item leveraging not only the given item’s product description
but also information about existing item recommendations that had
been adopted by users in the past. Finally, for sponsored search
advertising, each of the top monetizable queries on Bing is treated
as a separate label and label features are extracted based on CDSSM
embeddings [25] for each query. SwiftXML is then used to rank the
relevant queries for a given ad landing page leveraging not only
the page’s content but also information about existing queries that
had led to clicks on the ad in the past as well as existing queries
that the advertiser had bid on for that ad. This allows SwiftXML to
make significantly more accurate predictions as compared to pre-
vious extreme classification algorithms which could not leverage
information about existing tags, previously recommended items
and relevant queries.

Limitations of current recommender systems: Warm-start
recommendation is a very well studied problem and a number of
algorithms have been proposed outside the extreme classification
literature including those based on matrix factorization [12, 14, 16,
24], Inductive Matrix Completion [20], Local Collaborative Filter-
ing [17], etc. Unfortunately, most of these algorithms cannot scale
to the extreme setting as they cannot train on large item and user
feature matrices involving millions of items and users in reasonable
time on commodity hardware. Furthermore, some of these algo-
rithms are unable to handle implicit ratings (where missing labels
are not necessarily irrelevant) and, given millions of items, are
unable to make predictions in milliseconds, both of which are criti-
cal features for deploying in real world applications. While some
heuristics have been proposed to address these limitations, such
as adding a tree based search over the items as a post-processing
step [33], principled solutions which directly incorporate implicit
ratings and logarithmic prediction costs into the learning algorithm
have not been proposed for large scale recommender systems based
on user and item features. Finally, many of these algorithms, with
the notable exception of Local Collaborative Ranking [17], are based
on the assumption that the ratings matrix is low-rank and therefore
have poor prediction accuracies as this assumption is violated in
the extreme setting [7].

SwiftXML: SwiftXML addresses these limitations by efficiently
learning an ensemble of tree classifiers at the extreme scale. As
with other extreme classification algorithms, SwiftXML can train
on implicit ratings without the low-rank assumption and can make
predictions in milliseconds. Unlike other extreme classification
algorithms, however, SwiftXML grows its trees by recursively parti-
tioning nodes using two hyperplanes learned jointly in the user and
item feature spaces. This improves training over learning a single

hyperplane based on user features alone in the following ways.
First, users who were incorrectly partitioned based on user features
alone might now be partitioned correctly using the additional item
features. Second, users who like similar items can now be parti-
tioned together as their item features will be similar. Predictions
are made exactly as in existing tree-based extreme classifiers but
for the fact that trees are now traversed based on the sign of the
average prediction of both hyperplanes at a node. This improves
prediction accuracy by allowing SwiftXML to recommend items
that are similar to the items that are already liked by a user not just
in terms of ratings similarity as in the case of existing extreme clas-
sifiers but also in terms of item feature similarity. Finally, prediction
accuracy also improves over the traditional extreme classification
formulation as more information is now available at test time.

Contributions: This paper extends the extreme classification
formulation to handle warm-start scenarios and develops, to the
best of our knowledge, the first extreme classification algorithm
incorporating label features. The key technical contributions are
a novel tree node splitting function based on both user and item
features and a scalable algorithm for optimizing the function. Ex-
perimental results reveal that SwiftXML’s predictions can be as
much as 14% more accurate as compared to state-of-the-art extreme
classifiers and 37% more accurate as compared to classical methods
for warm-start recommendation. Another significant contribution
is the live deployment of SwiftXML to real users for sponsored
search on Bing. It is demonstrated that SwiftXML can increase the
relative click-through-rate by 10% while simultaneously reducing
the bounce rate by 30%.

2 RELATEDWORK
Much progress has recently been made in developing extreme learn-
ing algorithms based on trees [5, 15, 22, 29], embeddings [7, 10,
13, 19, 27, 28, 34] and linear approaches [6, 31, 32]. While these
methods might potentially be used to make warm-start recommen-
dations, their performance degrades in this setting since they do
not leverage item feature information during training and do not
exploit information about a user’s revealed item preferences during
prediction.

Direct approaches to extreme learning, such as DiSMEC [6] learn
and apply a separate linear classifier per label. As a result, they
have the highest prediction accuracies but can also take months for
training and prediction at extreme scales on commodity hardware.
Tree-based extreme classifiers, such as PfastreXML [15] have lower
prediction accuracies and larger model sizes but can train in hours
on a small server and can make predictions in milliseconds per
test point. Scaling to large datasets is a critical requirement for
deployment in Bing and one of the major advantages that extreme
classifiers enjoy over traditional warm-start recommendation al-
gorithms based on user and item features. SwiftXML is therefore
developed as an extension of PfastreXML. SwiftXML enjoys all the
scaling properties of PfastreXML while having significantly higher
prediction accuracies than PfastreXML, DiSMEC and state-of-the-
art recommender systems.

Warm-start prediction has beenwell-studied in the recommender
systems literature.Matrix factorization techniques such asWRMF [14],
SVD++ [16], BPR [24] and WBPR [12], were specifically designed

to address this scenario but factorize the ratings matrix without
exploiting user or item feature information. This limitation has
been addressed in IMC [20], Matchbox [26], LCR [17] and other
methods [4]. Unfortunately, none of these scale to the extreme
setting involving a large number of users and items with implicit
ratings. Furthermore, with the exception of LCR, each of these meth-
ods assumes that the ratings matrix is low-rank, which does not
hold in the extreme setting [7]. Consequently these methods have
poor prediction accuracies as demonstrated in the Experiments
Section. While some heuristics such as tree based post-processing
search [33] have been proposed to speed-up prediction, they are
not specialized for implicit rating scenarios and don’t address the
training time and accuracy concerns.

3 A MOTIVATING EXAMPLE
Consider the problem of tagging an existing Wikipedia article –
such as that of Albert Einstein which has already been annotated
with about 60 tags. State-of-the-art extreme classifiers suffer from
the following three limitations. First, during training, they learn
impoverished models from article text features alone and are unable
to leverage features from tags such as "Recipients of the Pour le
Mérite" and "Members of the Lincean Academy" which contain
information not found in the article’s text. SwiftXML avoids this
issue by learning from word2vec features extracted from the tags
in addition to the article text features. This allows SwiftXML to
predict "Recipients of civil awards and decorations" for the article
which could not be predicted by the traditional methods. Second,
again during training, existing classifiers learn that Einstein and
Newton’s articles are very different as they share very few tags.
However, SwiftXML learns that the two are similar as the word2vec
embeddings of "American physicists" and "English physicists" as
well as other corresponding tags are similar. This allows SwiftXML
to annotate Einstein’s article with Newton’s tag "Geometers" which
could not have been predicted from the article text directly. Finally,
during prediction, SwiftXML can confidently annotate Einstein’s
article with a novel tag "Astrophysicists" by relying on its sim-
ilarity to the existing tag "Cosmologists" in terms of their label
features. Existing extreme classifiers are unable to leverage such
label correlations.

4 SWIFTXML
This section develops the SwiftXML algorithm as an extension of
PfastreXML for addressingwarm start classification tasks. SwiftXML
retains all the scaling properties of PfastreXML while being sig-
nificantly more accurate owing to the effective use of additional
information about revealed item preferences and item features.
SwiftXML node partitioning optimizes a novel objective which
jointly learns two separating hyperplanes in the user and item
feature spaces respectively.

Classifier architecture: SwiftXML trees are grown by recur-
sively partitioning the users into 2 child nodes. Each internal node
stores 2 separating hyperplanes in the user and the item feature
spaces respectively, which jointly learn the user partitioning. Since
learning an optimum user partition is a computationally hard prob-
lem, SwiftXML proposes an efficient alternating minimization al-
gorithm which converges to a locally optimal solution. The joint

training allows information sharing between the 2 hyperplanes,
leading to better partitions. The tree growth is terminated when
all the leaf nodes contain less than a specified number of users
which is a hyperparameter of the algorithm. Each leaf node stores
a probability distribution over the items which are proportional
to number of users in the leaf that prefer the respective items. To
rectify the mistakes committed by a single, deep tree, SwiftXML
trains multiple trees which differ only in the random seed values
used to initialize the node partitioning algorithm. SwiftXML tree
prediction involves passing the test user down each of the trees,
starting from the root node until it reaches a leaf node. At each
node, the test point is sent to left (right) child if the average of
the scores predicted by the 2 hyperplanes is positive (negative).
The probability scores of all the reached leaf nodes are averaged
to obtain the label probability predictions. The SwiftXML trees are
prone to predicting tail labels with low probabilities as partitioning
errors in the internal nodes disproportionately reduce the support
of tail labels in the leaf node distributions. SwiftXML addresses
this limitation by re-ranking the tree predictions using classifiers
designed specifically for tail labels. SwiftXML follows the same
training and prediction procedure for tail label classifiers as [15].
SwiftXML trees were empirically observed to be well-balanced,
leading to logarithmic training and prediction complexities.

Item-set features: SwiftXML nodes learn a hyperplane in the
item-set feature space, jointly with a hyperplane in the user fea-
ture space. The item-set features encode semantic information
about a user’s revealed item preferences. The following linear
formula is used for deriving the item-set features of an ith user:
zi = (

∑
j y

r
i jx
′
j)/∥
∑
j y

r
i jx
′
j ∥, where yri ∈ {0,1}

L denotes the re-
vealed item preference vector for the ith user, and x′j ∈ R

D′ denotes
the feature vector for the jth item. This formulation ensures that
users with overlapping item preferences have similar item-set fea-
tures, which helps to retain those users together in the SwiftXML
trees. The item-set features provide information complementary
to the user features, and allow SwiftXML to leverage correlations
that exist between the revealed and the test items. To account for
varying number of revealed items across users, the item-set features
are normalized to unit norm.

Node partitioning objective function: SwiftXML optimizes
a novel node partitioning objective which is designed to ensure
both purity as well as generalizability of the learned partitions:

Min ∥wx ∥1 +Cx
∑
i
Lreg (δiw⊤x xi) + ∥wz ∥1 +Cz

∑
i
Lreg (δiw⊤z zi)

+Cr
∑
i

(1 + δi
2
Lrank (r+,yri) +

1 − δi
2
Lrank (r−,yri)

)
w.r.t. wx ∈ R

D ,wz ∈ R
D′ ,δ ∈ {−1,+1}L ,r+,r− ∈ Π(1,L)

where Lreg (x) = log(1 + e−x) ,Lrank (r,y) = −

∑L
l=1

yl
pl log(rl+1)∑L

l=1
1

log(l+1)
(1)

Here, i enumerates the training users; δi ∈ {−1,+1} indicates the
user assignment to either negative (right) or positive (left) partition;
wx ,wz represent the separating hyperplanes learned in the user

https://en.wikipedia.org/wiki/Albert_Einstein

and item-set feature spaces; r+ and r− represent the item rank-
ing variables for positive and negative partitions; Π(1,L) denotes
the space of all possible rankings over the L items; Cx ,Cz ,Cr are
SwiftXML hyper-parameters; pl are the item propensity scores [15].

The first line in (1) promotes model sparsity as well as gener-
alizability to test points by learning sparse logistic regressors in
user and item-set feature spaces. The second line maximizes node
purity by ranking the preferred items of each user as highly as
possible within its partition. Concretely, this is achieved by maxi-
mizing the Propensity-scored Normalized Discounted Cumulative
Gain (PSnDCG) metric. PSnDCG is unbiased to missing items and
boosts accuracy over rare and informative tail labels which are
also frequently missing owing to their unfamiliarity to the users.
Lrank (r−,yri) is the loss form of PSnDCG which is minimized by (1).
The tight coupling between δi and the two regressors as well as
the ranking terms help to learn node partitions that are both pure
and accurate. Upon joint optimization, the two separators bring
together those users having both similar user descriptions as well
as similar revealed item preferences.

The time complexity for training SwiftXML is O (N (T log(N) +

L̂) (D̂ + D̂ ′)), where N ,T are the number of training instances and
trained trees respectively; and L̂,D̂,D̂ ′ are the average number
of revealed items, non-zero user features and non-zero item-set
features of a user, respectively. The above complexity includes both
tree training times as well as tail label classifier training times,
and is dominated by the former. Due to small values of L̂,T and a
tractable log(N) ∗N dependence on the number of users, SwiftXML
training is sufficiently fast and scalable.

Optimization: The discrete objective in (1) cannot be straight
forwardly optimized with usual gradient descent techniques. There-
fore, an efficient, iterative, alternating minimization algorithm is
adopted which alternately optimizes over one of the four classes
of variables (δ ,r±,wx ,wz) at a time with the others held constant.
Optimization over δ with other variables held constant reduces (1)
to N separate problems over individual δi variables which have
simple closed form solutions:

δi = Sign
(
Cxw⊤x xi +Czw

⊤
z zi +Cr (Lrank (r+,yri)) −Lrank (r−,yri))

)
Optimization over r± with δ ,wx ,wz fixed also has a closed form
solution r± = rank

(∑
i :δi=± IL (y

r
i)y

r
i

)
, where rank(v) returns the

indices of v in their descending order, and IL (yri) is a user-specific
constant. Optimization over wx or wz while fixing the remaining
variables reduces to standard L1 regularized logistic regression
problems which can be efficiently solved using Liblinear [11]. In
practice, the algorithm alternates between r±,wx and wz variables,
interleaved with efficient δ optimizations. Early stopping with just
one iteration over all variables was found to be sufficient in practice.

Optimization time is empirically dominated by learning two L1
regularized logistic regressions, which have a combined cost of
O (Nnodet (D̂ + D̂ ′)), where Nnode is the number of training users
in the node and t (usually set to 1) is the number of iterations.

Prediction: SwiftXML tree prediction involves routing the test
user down the tree, starting from the root node until it reaches a
leaf. At each visited internal node, the user is sent to left (right)
child if the combined scores of the two separating hyperplanes, i.e.
Cxw⊤x x +Czw⊤z z, is greater (lesser) than 0, with ties being broken

randomly. When a leaf node is reached, the leaf’s item distribution
is used as the item preference scores. Thereupon, the individual
tree scores are averaged to obtain the ensemble scores, Ej (x) =∑T
t=1 P

t
j (x,z)/T for the j item, where P tj (x,z) is the probability

assigned by tree t to item j for the test point. These ensemble scores
are further reraked by combining with the tail label classifier scores
Bj as sj = α logEj (x) + (1−α) logBj (x) ∀j ∈ {1, ..,L}. Finally the
top scoring items are recommended to the test user.

The SwiftXML trees are well-balanced with O (log(N)) depth.
Consequently, tree prediction is efficient and its cost for a test user
is O (log(N) ∗ (D̂ + D̂ ′)). The overall complexity of the SwiftXML
prediction algorithm isO ((T log(N) + c) ∗ (D̂ + D̂ ′)), where c is the
number of top-scoring items being reranked by the base-classifiers.

Theoretical analysis of SwiftXML algorithm and optimization
are beyond the scope of this work. Detailed derivations of the
optimization steps and pseudocodes for SwiftXML training and
prediction algorithms are presented in supplementary .

5 SPONSORED SEARCH ADVERTISING
Objective and motivation: Search engines generate most of their
revenue via sponsored advertisements which are displayed along-
side the organic search results. While creating an ad campaign, an
advertiser usually provides minimalistic information such as a short
description of the ad, url of the ad landing page, a few bid-phrases
along with their corresponding bids. Bid-phrases are a set of search
queries that are judged to be relevant to the ad, and hence bidded
on by the advertisers. Since the potential monetizable queries are
in the order of millions, the advertiser won’t be able to provide
exhaustive list of all relevant bid-phrases. To address this limitation,
an ad retrieval system resorts to machine learning-based extended
match techniques [9, 23] which suggest additional relevant search
queries to bid on by leveraging advertiser provided information.
This ad retrieval application is a natural fit for warm-start recom-
mendations where the given bid phrases and historically known
relevant search queries can be used to predict new search queries
for the ad more accurately.

Ranking queries for ad retrieval: Ad retrieval task can be
formulated as extreme multi-label learning problem by treating
ad landing pages as data points and search queries as labels. Data
point feature vectors are created by extracting bag-of-words repre-
sentation from the ad landing pages. Relevant labels are generated
from the historical click logs i.e. a search query is tagged to be
relevant to an ad if the ad had received clicks when displayed for
the query in the past. For the warm-start scenario, the advertiser
provided bid-phrases as well as the queries that had led to clicks
on the ad in the past are considered as revealed labels for the ad.
Label features are extracted based on the CDSSM embeddings [25]
of the bid-phrases or the search query phrases.

Label relevance weights: Not all ads which were clicked for a
query in past are equally relevant or click-yielding to the query. One
such example is the query ”marco polo” which had received clicks
mostly from hotel related ads along with a few clicks from book
related ads. Treating all the clicked ads for this query as equally
relevant results in the query "marco polo" being recommended for
book related ads too, which in turn generates lower click through
rates on the actual search engine traffic. To address this problem,

https://drive.google.com/open?id=1BtrfMVNBHN-ZhJE5gNxdWDpC0_8H8pkY

Table 1: Dataset statistics

Dataset Train Features Labels Test Avg. labels Avg. points
N D L M per point per label

EURLex-4K 15,539 5,000 3,993 3,809 5.31 25.73
Wiki10-31K 14,149 101,938 30,935 6,613 17.25 11.58
AmazonCat-13K 1,186,239 203,882 13,330 306,782 5.05 566.01
CitationNetwork-36K 62,503 39,539 36,211 15,467 3.07 6.61
Amazon-79K 490,449 135,909 78,957 153,025 2.08 4.06
Wikipedia-500K 1,813,391 2,381,304 501,070 783,743 4.77 24.75

differential weights are assigned to each (query, ad) pair in the train-
ing data based on the ad’s click generating potential for the query as
measured by the normalized point-wise mutual information (nPMI).
Let ci j be number of historical clicks between ith ad and jth query.
Normalized PMI is defined as nPMIi j =

log(p (i)p (j))
logp (i,j) − 1, where

p (i) =
∑
j ci j/

∑
i,j ci j and p (i, j) = ci j/

∑
i,j ci j

The nPMI values are higher for more relevant query-ad pairs
in the training data and always lie between 0 and 1. SwiftXML is
learned on the weighted training data, which helped to improve
offline accuracy on the holdout data by 1% over the model trained
on the unweighted data.

Inverted ad-index: Trained SwiftXMLmodel was used to make
recommendations for all the ads in the system. For every ad, the
SwiftXML recommended queries having a score of above a thresh-
old are inserted into an inverted ad index, to be retrieved when the
corresponding query is entered in the search engine. A relatively
high threshold of 0.7 was set on the SwiftXML scores to maxi-
mize precision. Additionally, the top two SwiftXML recommended
queries were also inserted into the inverted ad index, since they
were found to be mostly relevant despite scoring lower than the
set threshold sometimes. This step improved recall, while main-
taining the precision value, thus achieving 2% improvement in the
offline F1-score on the holdout data, as compared to the global
threshold-only approach.

Mapping onto bid-phrases: SwiftXML recommended queries
need to be associated with one of the advertiser provided bid-
phrases in order to choose appropriate bid value for the query,
and also to allow the advertisers to track the campaign perfor-
mance at the bid-phrase level. A query to bid-phrase click model
is learned for this purpose, which assigns a click probability to a
given (query, bid-phrase) pair. Training data of form (query, bid-
phrase) is generated by considering historically clicked (query, ad)
pairs and extracting the corresponding bid-phrase from the ad. A
gradient boosted decision trees (GBDT) model is trained over the
following features extracted for each (query, bid-phrase) pair: syn-
tactic similarity features, historical click features (click counts at
token level) and semantic similarity features (Word2vec [18] and
CDSSM [25] embeddings). SwiftXML recommended query for an ad,
is associated with the bid-phrase with maximum click probability,
as predicted by the click model.

6 EXPERIMENTS
Experiments were carried out on benchmark datasets with up to
half a million labels demonstrating that: (a) SwiftXML could be as
much as 14% and 37% more accurate as compared to state-of-the-art
extreme classification and warm-start recommendation algorithms,
respectively; (b) SwiftXML could scale to extreme datasets beyond

Table 2: SwiftXML can be up to 14% and 37%more accurate as
compared to state-of-the-art extreme classifiers and warm-
start recommendation algorithms respectively according to
unbiased propensity-scored Precision@5 (PSP5). Results for
PSP1, PSP3 and biased Precision@k are presented in the sup-
plementary .

Dataset Algorithm Revealed Label Percentages
20% 40% 60% 80%

EURLex

WRMF 11.05 16.58 19.77 22.85
SVD++ 0.41 0.51 0.61 0.60
BPR 1.13 1.01 0.86 2.24
PfastreXML 48.21 48.64 51.13 52.46
SLEEC 42.72 46.31 48.56 51.64
PDSparse 43.79 45.72 46.02 49.87
DiSMEC 47.03 48.30 50.54 51.63
IMC 11.23 11.45 11.45 11.72
Matchbox 0.50 – 1.00 1.09
SwiftXML 48.45 49.72 53.12 55.70

Wiki10

WRMF 5.27 6.01 6.34 6.33
PfastreXML 19.80 18.17 16.31 14.77
SLEEC 12.42 12.57 12.28 12.14
PDSparse 8.02 6.78 5.72 4.73
DiSMEC 15.47 15.19 14.53 13.87
IMC 2.36 3.42 3.87 3.98
SwiftXML 19.92 19.07 17.06 16.23

AmazonCat
PfastreXML 76.32 75.80 75.17 76.30
PDSparse 65.25 61.61 58.37 57.47
SwiftXML 77.17 81.10 83.77 87.83

CitationNetwork

PfastreXML 15.39 15.19 15.30 15.24
SLEEC 7.41 7.65 7.37 6.40
PDSparse 14.65 14.48 14.05 14.21
DiSMEC 17.84 17.78 18.06 18.49
SwiftXML 16.92 17.84 19.44 19.34

Amazon

PfastreXML 36.39 36.14 36.61 35.40
SLEEC 23.83 28.30 32.24 31.33
PDSparse 34.12 33.57 33.54 32.85
DiSMEC 41.89 41.94 42.54 41.86
SwiftXML 37.69 42.80 51.33 49.44

Wikipedia PfastreXML 33.34 33.35 33.22 35.22
SwiftXML 34.76 35.31 35.68 38.07

the scale of state-of-the-art warm-start recommendation algorithms
that train on both document and label features and (c) deploying
SwiftXML in a live system for sponsored search advertising on Bing
led to significant gains in the click-through rate and quality of ad
recommendations as well as simultaneous reductions in the bounce
rate.

Datasets and features: Experiments were carried out on bench-
mark datasets containing up to 1.8 million training points, 2.3 mil-
lion dimensional features and 0.5 million labels (see Table 1 for
dataset statistics). The applications considered range from tagging
Wikipedia articles (Wikipedia-500K), cataloging Amazon items into
multiple Amazon product categories (AmazonCat-13K), item-to-
item recommendation of Amazon products (Amazon-79K), paper

https://drive.google.com/open?id=1BtrfMVNBHN-ZhJE5gNxdWDpC0_8H8pkY
https://drive.google.com/open?id=1BtrfMVNBHN-ZhJE5gNxdWDpC0_8H8pkY

Table 3: SwiftXML can be up to 14% and 4% more accu-
rate according to unbiased propensity scored Precision@5
as compared to baseline extensions of PfastreXML incorpo-
rating label features via early and late fusion respectively.
Results for othermetrics, including biased Precision@k , are
reported in the supplementary .

Dataset Algorithm Revealed Label Percentages
20% 40% 60% 80%

EURLex
PfastreXML-early 47.29 49.82 52.04 54.40
PfastreXML-late 48.21 49.55 52.25 46.05
SwiftXML 48.45 49.72 53.12 55.70

Wiki10
PfastreXML-early 19.59 18.17 16.31 14.94
PfastreXML-late 19.80 18.03 16.31 14.65
SwiftXML 19.92 19.07 17.06 16.23

AmazonCat
PfastreXML-early 74.56 78.53 79.77 81.52
PfastreXML-late 76.23 78.20 81.43 85.40
SwiftXML 77.17 81.10 83.77 87.83

CitationNetwork
PfastreXML-early 15.04 15.08 15.43 15.54
PfastreXML-late 15.73 17.12 19.11 19.86
SwiftXML 16.92 17.84 19.44 19.34

Amazon
PfastreXML-early 36.45 36.18 36.64 35.43
PfastreXML-late 36.71 40.42 46.71 45.98
SwiftXML 37.69 42.80 51.33 49.44

Wikipedia
PfastreXML-early 34.23 34.44 34.43 36.47
PfastreXML-late 33.78 34.26 34.88 37.66
SwiftXML 34.76 35.31 35.68 38.07

Table 4: SwiftXML could increase the relative click-through-
rate (CTR) and relative quality of ad recommendation (QOA)
by 10% while simultaneously reducing the bounce rate (BR)
by 30% on sponsored search on Bing.

Algorithm Relative Relative Relative
CTR (%) QOA (%) BR (%)

Bing 100 100 100
PfastreXML 102 103 76
SwiftXML 110 112 69

citation recommendation (CitationNetwork-39K) and document tag-
ging (EURLex-4K, Wiki10-31K). All the datasets can be publically
downloaded from The Extreme Classification Repository [8]. Bag-
of-words TF-IDF features provided on the Repository were used as
the document (or user) features for each dataset. 500-dimensional
word2vec embeddings [18] were used to generate the label features
as these led to better results as compared to other word embedding
models including glove [21] and phrase2vec [3]. Algorithms were
evaluated under various warm-start conditions as more and more
of a user’s item preferences were revealed. This was simulated by
randomly sampling 20%, 40%, 60% and 80% of the test labels and
revealing them during training while the remaining labels were
used for evaluation purposes as ground-truth.

Baseline algorithms: SwiftXML was compared to four types
of algorithms for warm-start recommendation. First, SwiftXML
was compared to WRMF [14], SVD++ [16] and BPR [24] which

are collaborative filtering algorithms based on factorizing the label
(ratings) matrix alone and do not leverage user or item features. Sec-
ond, SwiftXML was compared to state-of-the-art extreme classifiers
based on trees (PfastreXML [15]), embeddings (SLEEC [7]) and lin-
ear methods that learn a separate classifier per label (PDSparse [32]
and DiSMEC [6]). The extreme classifiers improve upon the col-
laborative filtering methods by training on the user features along
with the label (ratings) matrix. Third, SwiftXML was also com-
pared to state-of-the-art recommender systems such as Inductive
Matrix Completion (IMC) [20] and Matchbox [26] which extend
collaborative filtering and extreme classification methods by lever-
aging user features, label (item) features and the label (ratings)
matrix during both training and prediction. Finally, SwiftXML was
compared to two alternate ways of extending the state-of-the-art
tree based PfastreXML extreme classifier [15] to handle label fea-
tures. In particular, PfastreXML-early uses early fusion to train
PfastreXML on concatenated label and document features with
the relative weighting of the two feature types being determined
through validation. In contrast, PfastreXML-late uses late fusion
to learn separate PfastreXML classifiers in the document and label
feature spaces and then combines the two scores during prediction
with relative weighting being again determined through validation.

Results are reported for the Mrec [2] recommender system li-
brary implementation of WRMF, the Mahout [1] implementation
of SVD++ and the Matchbox implementation available on the Mi-
crosoft Azure cloud computing platform. The implementation of all
the other algorithms was provided by the authors. Unfortunately,
some algorithms do not scale to large datasets and results have
therefore been reported for only those datasets to which an imple-
mentation scales. The relative performance of all the methods can
be compared on the small scale EURLex dataset.

Hyper-parameters: In addition to the hyper-parameters of
PfastreXML, SwiftXML has two extra hyper-parameters Cz ,λz
which weight the loss incurred over the label features in the node
partitioning objective and the base classifiers respectively . Unfortu-
nately, the Wikipedia-500K dataset is too large for hyper-parameter
tuning through validation and therefore all algorithms were run
with default values, with the default SwiftXML values kept same
as in PfastreXML along with Cz = λz = 1. On the other datasets,
the hyper-parameters for all the algorithms were tuned using fine
grained validation so as to maximize the prediction accuracy on
the validation set.

Evaluation metrics: Performance evaluation was done using
precision@k and nDCG@k (with k = 1,3 and 5) which are widely
used metrics for extreme classification. Performance was also evalu-
ated using propensity scored precision@k and nDCG@k (PSPk and
PSNk with k = 1,3 and 5) which have recently been shown to be
unbiased, and more suitable, metrics [15] for extreme classification,
tagging, ranking, recommendation, etc. The propensity model and
values available on The Extreme Classification Repository were
used. Results for all metrics apart from PSP5 are reported in the
supplementary due to space limitations.

Results - prediction accuracy: Tables 2 and 3 compare predic-
tion accuracy of SwiftXML to the various baseline algorithms as the
percentage of labels revealed during training is varied from 20% to
80%. As can be seen in Table 2, SwiftXML’s predictions can be up to
14% and 37% more accurate as compared to state-of-the-art extreme

https://drive.google.com/open?id=1BtrfMVNBHN-ZhJE5gNxdWDpC0_8H8pkY
https://drive.google.com/open?id=1BtrfMVNBHN-ZhJE5gNxdWDpC0_8H8pkY

classifiers and warm-start recommendation algorithms respectively.
The largest gains over existing extreme classifiers were observed
for item-to-item recommendation on Amazon. This was because
many Amazon products had unhelpfully brief product descriptions,
translating into poor user features for existing extreme classifiers.
In fact, in some extreme cases, some Amazon products had no prod-
uct description whatsoever apart from the product name. However,
the very same products had a number of other products that had
frequently been bought together with them which contained some
useful information. This was leveraged by SwiftXML as item fea-
tures to make significantly better recommendations. SwiftXML was
also able to make better predictions by leveraging such features
even when a sufficiently verbose product description was available
(see figure 1 for qualitative examples).

Table 3 also illustrates that SwiftXML can be more accurate
as compared to early and late fusion methods for incorporating
label features into PfastreXML by as much as 14% and 4% respec-
tively. Early fusion has several limitations such as its tendency to
overfit and an inherent bias towards the dense label features over
sparse document features [30]. PfastreXML-late learns independent
classifiers over the document and label features and therefore has
suboptimal performance as compared to SwiftXML’s which learns
node separators in both spaces jointly.

Results - scaling: As Tables 2 and 3 show, SwiftXML can effi-
ciently scale to large datasets beyond the scale of warm-start recom-
mendation algorithms such as IMC and Matchbox which also train
on both document and label features. SwiftXML’s training time is
comparable to that of PfastreXML-early and PfastreXML-late, other
techniques for handling warm-start problems based on both docu-
ment and label features, but it’s prediction time and model size can
be lower. As compared to PfastreXML, SwiftXML’s training time is
3-4x more in general but its prediction time and model size might be
sometimes lower as it learns shorter better quality trees due to the
extra information available. For instance, on the AmazonCat-13K
dataset with 1.1 million training points and 13.3K labels, SwiftXML,
PfastreXML-early, PfastreXML-late and PfastreXML,’s trained in
25, 19, 29 and 7 hours respectively on a single core of Intel Xeon 2.6
GHz server, while their model sizes were 10, 15, 19 and 16 GB respec-
tively with prediction times being 4.2, 6.6, 4.7 and 4.3 milliseconds
respectively. Note that SwiftXML training can be easily parallelized
by growing each tree on a separate core, unlike algorithms such as
Matchbox whose implementations run on only a single core. More
parallelization can be attained in SwiftXML training by growing
each node with the same tree depth on a separate core.

Sponsored Search Advertising: SwiftXML was used to rank
the queries that might lead to a click on a given ad shown on Bing.
While PfastreXML could only rank the queries on the basis of the
text present on the ad-landing page, SwiftXML was able to leverage
information about other queries that had already led to a click on
the ad as well as queries that had been bid on by the advertiser
for that page. Performance is measured in terms of click-through
rate (CTR), bounce rate (QBR) and quality of ad recommendations
(QOA). The bounce rate is defined as the percentage of times a
user returns back immediately after viewing an ad landing page,
indicating user dissatisfaction. The quality of ad recommendations
measures the relevance of ad recommendations to a search query
and is estimated by a query-ad relevance model trained on human

labelled data. Table 4 compares SwiftXML to PfastreXML as well
as a large ensemble of state-of-the-art methods for query ranking
which are currently in production, referred to as Bing-ensemble. As
can be seen, SwiftXML leads to upto 10% higher CTR and QOA, as
well as upto 10% lower QBR as compared to both PfastreXML and
Bing-ensemble. The training times of SwiftXML and PfastreXML
algorithms were 140 and 200 hours respectively, while their model
sizes were 3.7 and 3.8 GB rspectively, with prediction times being
1.7 and 1.8 milliseconds per test point respectively.

Qualitative examples: Figure (1) illustrates the advantages of
SwiftXML over PfastreXML through some representative exam-
ples. PfastreXML suffers from several limitations due to its sole
reliance on user features, which are overcome by SwiftXML by
leveraging revealed items and item feature information. First, the
user features often fail to provide sufficient information for classifi-
cation, with an extreme case being "(a) AmazonCat: Kvutzat Yavne
pickles" whose web page contains limited text. In this case, Pfas-
treXML recommends popular labels such as "Books" and "Literature
& fiction" which are unfortunately irrelevant. On the other hand,
SwiftXML leverages information about revealed tags such as "Pick-
les" and "Pickles & relishes" to recommend relevant tags such as
"Dill pickles", "Grocery & gourmet food". Second, PfastreXML some-
times puts greater emphasis on the irrelevant, but frequent user
features such as "language" and "Barron" in "(d) Amazon: Barron’s
IELTS ..." leading to irrelevant recommendations, such as "More
useful french words" and "Spanish the Easy Way (Barron’s E-Z)". In
contrast, the information about revealed items such as "toefl" and
"academic english" inform SwiftXML to emphasize more on the
relevant user features such as "ielts" and "testing", resulting in use-
ful IELTS preparation books being recommended to the customer.
Third, PfastreXML is unable to disambiguate between homonyms
such as "Fo" in the book title "(c) Amazon: Xsl Fo" versus "Fo" in
the surname of dramatist "Dario Fo", both of which are among the
user features. Hence, PfastreXML incorrectly recommends Dario
Fo’s plays instead of books on Xsl. SwiftXML resolves this ambi-
guity by using the context information from revealed books about
"xsl" to recommend relevant books such as "Definitive XSL-FO" and
"Learning XSLT". SwiftXML also leverages correlations between
the revealed items and the relevant test items, to make accurate
predictions. For example, the strong correlation between the re-
vealed label "Marx" and novel label "Karl" in "(b) AmazonCat: Rosa
Luxemburg..." is used by SwiftXML to correctly recommend "Karl".
Furthermore, the revealed bid-phrases also help SwiftXML to ac-
curately resolve advertiser intents such as selling archery items in
"(e) Bing Ads: 3RiversArchery archery supplies" and selling pest
bird control products in "(f) Bing Ads: Arcat pest control".

7 CONCLUSIONS
This paper extended the extreme classification formulation to han-
dle warm-start scenarios by leveraging item features which can pro-
vide a rich, and complementary, source of information to the user
features relied on by traditional extreme classifiers. The SwiftXML
algorithm was developed for exploiting item features and label
correlations as a simple, easy to implement and reproduce exten-
sion of the PfastreXML extreme classifier. Despite its simplicity,

(a) AmazonCat: Kvutzat Yavne pickles (b) AmazonCat: Rosa Luxemburg, Women’s Liberation, and Marx’s
Philosophy of Revolution book

(c) Amazon: Xsl Fo book (d) Amazon: Barron’s IELTS with Audio CD book

(e) Bing Ads: 3RiversArchery archery supplies (f) Bing Ads: Arcat pest control products

Figure 1: Item recommendations by PfastreXML and SwiftXML onAmazonCat, Amazon and BingAds: PfastreXMLpredictions
are frequently irrelevant due to lack of informative user features (e.g. (a)), emphasis on thewrong features (e.g. (d)) and inability
to disambiguate homonyms (e.g. (e)). SwiftXML leverages item correlations (e.g. "Marx" => "Karl" in (b)) and helpful information
from revealed items and their features (e.g. (a)-(f)) to make much more accurate predictions. See text for more details. Figure
best viewed under high magnification.

SwiftXML was shown to improve prediction accuracy on the Ama-
zon item-to-item recommendation task by as much as 37% and
14% over state-of-the-art warm start recommendation algorithms
and extreme classifiers respectively. Furthermore, live deployment
for sponsored search advertising on Bing revealed that SwiftXML

could increase the click-through rate and quality of ad recommen-
dations by 10%, and reduce the bounce rate by 31% as compared to
a large ensemble of state-of-the-art algorithms in production. The
SwiftXML code will be made publically available.

REFERENCES
[1] [n. d.]. Apache Mahout. https://mahout.apache.org. ([n. d.]).
[2] [n. d.]. Mrec recommender systems library. http://mendeley.github.io/mrec. ([n.

d.]).
[3] [n. d.]. Phrase2vec. https://github.com/zseymour/phrase2vec. ([n. d.]).
[4] D. Agarwal and B. C. Chen. 2009. Regression-based Latent Factor Models. In

KDD. 19–28.
[5] R. Agrawal, A. Gupta, Y. Prabhu, and M. Varma. 2013. Multi-label Learning with

Millions of Labels: Recommending Advertiser Bid Phrases for Web Pages. In
WWW.

[6] R. Babbar and B. Schölkopf. 2017. DiSMEC: Distributed Sparse Machines for
Extreme Multi-label Classification. In WSDM.

[7] K. Bhatia, H. Jain, P. Kar, M. Varma, and P. Jain. 2015. Sparse Local Embeddings
for Extreme Multi-label Classification. In NIPS.

[8] K. Bhatia, H. Jain, Y. Prabhu, and M. Varma. [n. d.]. The Extreme Classification
Repository: Multi-label Datasets & Code. ([n. d.]). http://manikvarma.org/
downloads/XC/XMLRepository.html

[9] Y. Choi, M. Fontoura, E. Gabrilovich, V. Josifovski, M. Mediano, and B. Pang. 2010.
Using landing pages for sponsored search ad selection. In WWW.

[10] M. Cissé, N. Usunier, T. Artières, and P. Gallinari. 2013. Robust Bloom Filters for
Large MultiLabel Classification Tasks. In NIPS.

[11] R. E. Fan, K. W. Chang, C. J. Hsieh, X. R. Wang, and C. J. Lin. 2008. LIBLINEAR:
A library for large linear classification. JMLR (2008).

[12] Z. Gantner, L. Drumond, C. Freudenthaler, and L. Schmidt-Thieme. 2012. Person-
alized Ranking for Non-Uniformly Sampled Items. In Proceedings of KDD Cup
2011. 231–247.

[13] D. Hsu, S. Kakade, J. Langford, and T. Zhang. 2009. Multi-Label Prediction via
Compressed Sensing. In NIPS.

[14] Y. Hu, Y. Koren, and C. Volinsky. 2008. Collaborative Filtering for Implicit
Feedback Datasets. In ICDM.

[15] H. Jain, Y. Prabhu, and M. Varma. 2016. Extreme Multi-label Loss Functions for
Recommendation, Tagging, Ranking & Other Missing Label Applications. In
KDD.

[16] Y. Koren. 2008. Factorization Meets the Neighborhood: A Multifaceted Collabo-
rative Filtering Model. In KDD.

[17] J. Lee, S. Bengio, S. Kim, G. Lebanon, and Y. Singer. 2014. Local collaborative
ranking. In WWW.

[18] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. 2013. Distributed Repre-
sentations of Words and Phrases and their Compositionality. CoRR abs/1310.4546
(2013).

[19] P. Mineiro and N. Karampatziakis. 2015. Fast Label Embeddings for Extremely
Large Output Spaces. In ECML.

[20] N. Natarajan and I. Dhillon. 2014. Inductive Matrix Completion for Predicting
Gene-Disease Associations. In Bioinformatics.

[21] J. Pennington, R. Socher, and C. D. Manning. 2014. Glove: Global Vectors for
Word Representation. In EMNLP. 1532–1543.

[22] Y. Prabhu and M. Varma. 2014. FastXML: A fast, accurate and stable tree-classifier
for extreme multi-label learning. In KDD.

[23] H. Raghavan and R. Iyer. 2008. Evaluating vector-space and probabilistic mod-
els for query to ad matching. In SIGIR Workshop on Information Retrieval in
Advertising.

[24] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. 2009. BPR:
Bayesian Personalized Ranking from Implicit Feedback. In UAI.

[25] Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil. 2014. Learning semantic represen-
tations using convolutional neural networks for web search. In WWW.

[26] D. H. Stern, R. Herbrich, and T. Graepel. 2009. Matchbox: large scale online
bayesian recommendations. In WWW.

[27] Y. Tagami. 2017. AnnexML: Approximate Nearest Neighbor Search for Extreme
Multi-label Classification. In KDD. 455–464.

[28] J. Weston, S. Bengio, and N. Usunier. 2011. Wsabie: Scaling Up To Large Vocabu-
lary Image Annotation. In IJCAI.

[29] J. Weston, A. Makadia, and H. Yee. 2013. Label Partitioning For Sublinear Ranking.
In ICML.

[30] C. Xu, D. Tao, and C. Xu. 2013. A Survey on Multi-view Learning. CoRR (2013).
[31] I. E. H. Yen, X. Huang, W. Dai, P. Ravikumar, I. Dhillon, and E. Xing. 2017.

PPDsparse: A Parallel Primal-Dual Sparse Method for Extreme Classification. In
KDD. 545–553.

[32] I. E. H. Yen, X. Huang, K. Zhong, P. Ravikumar, and I. S. Dhillon. 2016. PD-
Sparse: A Primal and Dual Sparse Approach to Extreme Multiclass and Multilabel
Classification. In ICML.

[33] F. Zhang, T. Gong, Victor E. Lee, G. Zhao, C. Rong, and G. Qu. 2016. Fast
Algorithms to Evaluate Collaborative Filtering Recommender Systems. Know.-
Based Syst. (2016), 96–103.

[34] Y. Zhang and J. G. Schneider. 2011. Multi-Label Output Codes using Canonical
Correlation Analysis. In AISTATS.

https://mahout.apache.org
http://mendeley.github.io/mrec
https://github.com/zseymour/phrase2vec
http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html

	Abstract
	1 Introduction
	2 Related Work
	3 A Motivating Example
	4 SwiftXML
	5 Sponsored Search Advertising
	6 Experiments
	7 Conclusions
	References

