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ABSTRACT
ExtremeMulti-label Learning (XML) involves assigning the subset of
most relevant labels to a data point frommillions of label choices. A
hitherto unaddressed challenge in XML is that of predicting unseen
labels with no training points. These form a significant fraction of

total labels and contain fresh and personalized information desired

by end users. Most existing extreme classifiers are not equipped for

zero-shot label prediction and hence fail to leverage unseen labels.

As a remedy, this paper proposes a novel approach called ZestXML

for the task of Generalized Zero-shot XML (GZXML) where rele-

vant labels have to be chosen from all available seen and unseen
labels. ZestXML learns to project a data point’s features close to

the features of its relevant labels through a highly sparsified linear

transform. This 𝐿0-constrained linear map between the two high-

dimensional feature vectors is tractably recovered through a novel

optimizer based on Hard Thresholding. By effectively leveraging

the sparsities in features, labels and the learnt model, ZestXML

achieves higher accuracy and smaller model size than existing XML

approaches while also promoting efficient training & prediction,

real-time label update as well as explainable prediction.

Experiments on large-scale GZXML datasets demonstrated that

ZestXML can be up to 14% and 10% more accurate than state-of-

the-art extreme classifiers and leading BERT-based dense retrievers

respectively, while having 10x smaller model size. ZestXML trains

on largest dataset with 31M labels in just 30 hours on a single

core of a commodity desktop. When added to an large ensemble of

existing models in Bing Sponsored Search Advertising, ZestXML

significantly improved click yield of IR based system by 17% and

unseen query coverage by 3.4% respectively. ZestXML’s source code

and benchmark datasets for GZXML will be publically released for

research purposes here.
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1 INTRODUCTION
Extreme multi-label learning (XML) involves assigning the subset
of most relevant labels to a data point from an extremely large set

of label choices. This research area has seen a surge in popularity

in recent years owing to its numerous applications in document

tagging [7], product recommendation [8], computational adver-

tising [45] and language modeling [23]. For instance, the search

advertising task can be posed as predicting the subset of all pos-

sible search queries (labels) from users for which an ad (a data

point) could receive clicks [45]. The XML paradigm aims to provide

highly accurate and efficient solutions to large-scale ranking and

recommendation tasks.

Unseen labels in XML: This paper addresses a crucial, yet

under-explored, problem of unseen or zero-shot labels in XMLwhich

are absent during training time but are available for prediction. Such

labels occur frequently in most XML applications since the label

set grows continuously over time with evolving user activities and

needs. For example, in Bing advertising, a majority of user queries

are new (see Figure 1) and are known to contribute a significant

fraction of ad clicks. As part of the long label tail [20], unseen labels

also serve fresh, serendipitous and personalized information often

desired by the end users. Accurate prediction of relevant but unseen

labels is, therefore, critical for maximizing user satisfaction and

revenue in XML applications. At the same time, it is also equally

important to predict the previously seen relevant labels since they

serve the familiar or routine needs of the users.

GZXML paradigm:Motivated by these observations, this paper

explores the problem of predicting the relevant label subset for a

data point frommillions of both seen and unseen labels, a paradigm

we refer to as Generalized Zero-shot Extreme Multi-label Learning

(GZXML). Unseen labels have been generally recognized as hard
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to learn since they lack any representative training points. The ex-

isting XML approaches sidestep this challenge by restricting their

learning to only the seen labels with enough training points. Conse-

quently, they suffer from degraded model accuracy, need frequent

and expensive model re-trainings to mitigate the label churn and

are still unable to predict completely new labels. This necessitates

new, improved approaches provided by GZXML setting.

Challenges of GZXML: A number of research challenges have

to be addressed by an effective solution to GZXML. First, the labels

belonging to all data regimes need to be accurately modeled in a

seamless manner. These regimes can be roughly divided into many-

shot, few-shot and zero-shot labels with > 3, 1 − 3 and 0 training

points respectively. While popular labels might have enough data

to allow complex and personalized models, the tail (few-shot and

zero-shot) labels require information sharing between labels. A

GZXML approach needs to carefully distribute its capacity among

the labels to maximize the overall prediction accuracy.

Second, training and prediction should be efficient in terms of

both time and memory requirements. This is essential to scale to

applications with several million data points, features and labels

(see Table 1). A training time of a few hours and a model size of a

few GBs enable learning and calibrating models on cheap commod-

ity hardware which maximizes profits in big-data applications and

makes these techniques accessible to general practitioners. Further-

more, a prediction latency of just a few milliseconds is essential in

most user-facing applications.

Third, since new labels would continually arrive in GZXML

applications (e.g. queries in Bing Ads), the data structures used for

efficient prediction should allow real-time label updates.

Limitations of existing approaches: The current state-of-the-
art techniques in XML are 1-vs-All based approaches [2, 11, 63, 66].

These approaches learn a separate personalized classifier for each

label seen during training time and thus accurately model the many-

shot labels. However, these largely ignore any available label meta-

data and are hence incapable of recommending zero-shot labels.

Additionally, they also tend to perform poorly on few-shot labels

due to classifier over-fitting issues (see Section 5). Recently, several

approaches have been proposed which aim to model the few-shot

labels more accurately [40, 46]; these, however, do not address the

zero-shot prediction problem.

Several zero-shot multi-label learners have also been proposed

for the non-extreme setting of up to a few thousand labels [7, 14, 41,

50, 69]. They leverage label meta-data such as label hierarchies or

features for transferring the learnt information from seen to unseen

labels. Unfortunately, these methods possess linear or super-linear

complexities in the number of labels and are prohibitively expensive

when applied to millions of labels.

Among the other relevant approaches to GZXML are the dense

approximate nearest neighbour search (DANNS) techniques [34, 48,

60] and the generative techniques [62]. The DANNS approaches

project the relevant data points and labels close together in a dense

shared embedding space and utilize approximate search data struc-

tures for efficient label prediction. These methods tend to have

inferior performance on head labels due to lack of classifier person-

alization and often need days to train. In addition, the underlying

ANNS data structures [35] do not support real-time label updates in

an out-of-the-box manner. The generative approaches, which syn-

thesize the relevant labels for a given test point, tend to have large

prediction latencies which makes them unsuitable for real-world

tasks with a few milliseconds’s latency budget [62].

Proposed algorithm: This paper proposes the ZestXML algo-

rithm for solving the GZXML problem. ZestXML aims to leverage

label features effectively in order to generalize well to both seen

and unseen labels. During training, it learns to project a data point’s

features close to the features of its relevant labels through a highly

sparsified linear transform. The enforced model sparsity is based

on the intuition that most relevant labels can be recognized by

the information provided by a small number of discrete feature-

feature interactions with a point (see Section 3). The number of

such interactions can be really huge since features are often in mil-

lions; ZestXML develops a novel optimizer named eXtreme Hard

Thresholding Pursuit (XHTP) to address this. ZestXML effectively

uses model sparsity, not only as a regularizer, but also for efficient

training and prediction.

Due to its use of both seen and unseen labels, ZestXML can be

up to 14% and 10% more accurate than state-of-the-art extreme

classifiers and leading BERT-based dense retrievers respectively.

The extreme sparsity in its model also results in 10x smaller model

size than state-of-the-art extreme classifiers. The learnt model also

has the advantages of real-time label updates and explainability

which are desirable in recommendation and ranking applications.

Contributions: This paper makes the following contributions:

• GZXML: Motivates the GZXML paradigm which is better

suited for large-scale ranking and recommendation than

traditional XML. Stimulates research in GZXML through

source code and dataset releases.

• ZestXML: Proposes the ZestXML algorithm for GZXML

based on a novel XHTP optimization technique for scalably

learning sparse and accurate models

• Bing Ads: Demonstrates the practical impact of ZestXML

through an A/B test in Bing Sponsored Search Ads which

resulted in 17% and 3.4% gains in click yield of IR based

system and unseen query coverage respectively

Figure 1: Plot of long query tail in Bing Advertising. Most
search queries have few or no previously clicked ads.



2 RELATEDWORK
Extreme multi-label learning: A plethora of extreme classifiers

have been proposed which can be grouped into tree-based [1, 6,

20, 22, 26, 44–47, 53, 57, 66], embedding-based [4, 16, 21, 31, 39,

56, 67], 1-vs-all based [2, 3, 19, 28, 32, 42, 45, 55, 63, 64, 66] and

deep-learning based [23, 32, 37, 37, 66] approaches. Among these,

MACH [37], AttentionXML [66], Parabel [45] and Slice [19] are

notable for their high prediction accuracy and scalability. MACH,

Parabel and Slicemaintain logarithmic training and prediction times

by using efficient label search data structures based on hashes, trees

and graph respectively. AttentionXML achieves state-of-the-art

prediction accuracies through BiLSTM-based feature learning but it

is slow to train even with high-end GPUs and does not scale to more

than a few million labels. Extreme classifiers like PfastreXML [20],

XReg [46] and DECAF [40] optimize for few-shot labels where the

first two learn for propensity-scored losses which prioritize tail

labels and the last incorporates label features for better tail label

modeling. Regardless of their nature, none of these perform zero-

shot label prediction. ZestXML outperforms all these approaches

by up to 14% in prediction accuracy due to better modeling and

access to more label choices from unseen ones.

Zero-shotmulti-label learning: Although zero-shot classifica-
tion is a highly researched area, most of the existing work concerns

multi-class learning [15, 25, 27, 29, 33, 38, 43, 51, 59] with only a

handful of multi-label learning approaches [7, 14, 17, 18, 30, 41, 50,

69]. These existing ZML algorithms are designed for 100s-1000s of

labels and don’t scale to 1M labels. ZestXML can be more accurate

than some of the state-of-the-art ZML methods [7, 50] by up to 7%

while predicting both seen and unseen labels (i.e. generalized ZML

setting) in a few thousand labels regime. Although it is possible to

extend some of the scalable multi-class variants like ConSE [43] to

multi-label scenario, such extensions tend to have lesser accuracies.

ANNS on dense embeddings: Dense embeddings have been

widely trained in many earlier XML algorithms [4, 21, 39], but

they have linearly scaling training time in labels. Several dense-

embedding based neural rankers [12, 52, 68] have also been pro-

posed but they don’t scale to millions of labels and hence are not

pertinant here. A few neural modeling based approaches have also

been proposed for prediction with millions of labels [34, 65]. Beside

the limitations discussed in the introduction, the performance for

dense representations is also known to decrease quickly with more

labels as compared to sparse maps [49].

Other approaches: Unsupervised techniques like topic model-

ing [10] learn relevant topics for labels, index a label against its

topics and then map a point on to topics to retrieve its labels. These

usually learn and apply around 10K topics which won’t general-

ize well to millions of labels leading to inferior accuracy. Some

approaches also synthesize the relevant labels for a point, but are

significantly slow to predict and known to be error-prone [62].

3 PROPOSED ALGORITHM: ZESTXML
3.1 Problem Setup
Intuition: Consider the problem of labeling a Wikipedia article

on Geoffrey Hinton with relevant Wikipedia categories such as

turing award laureates out of millions of available categories.

A useful observation is that most articles associated with this la-

bel contain the phrases turing award and computer scientist
which, in turn, corrrespond to the turing award and laureates
parts of this label, respectively. In many XML problems, the labels

can be adequately modeled through a small number of such inter-

actions between data point-label feature pairs. For example, in Bing

Ads, the relevant queries can be predicted by semantically match-

ing the product types, brand names and other informative fields

between the query and the ad text. ZestXML aims to learn a small

number of highly accurate feature pairs in a scalable manner. This

results in frugal models which achieve high prediction accuracy

while also maintaining logarithmic inference costs and model sizes.

Notations: Given 𝑁 training points and 𝐿 labels, for an 𝑖th

point and 𝑙th label respectively, x𝑖 ∈ R𝐶 , z𝑙 ∈ R𝐷 indicate their

high dimensional, sparse TF-IDF feature vectors whose sparsities

are bounded by 𝐶 and �̂� . These features can be expressed as X,Z
which are𝐶 ×𝑁 and 𝐷 ×𝐿 dimensional matrices with each column

representing a separate data point or a label. The ground truth

relevances are indicated through binary variables 𝑦𝑖𝑙 ∈ {−1, 1}
where 𝑦𝑖𝑙 = 1 means that the label 𝑙 is relevant to the data point 𝑖 .

Formulation: ZestXML models the relevance between a data

point 𝑖 and a label 𝑙 through linear feature interactions between x𝑖
and z𝑙 . The relevance score 𝑠𝑖𝑙 between them is expressed as

𝑠𝑖𝑙 = x⊤𝑖 Wz𝑙 (1)

where a large (small) 𝑠𝑖𝑙 value means high (low) relevance. For

simplicity, the bias terms are absorbed into (1) by appending a

constant feature to x𝑖 , z𝑙 . W is an R𝐶 × R𝐷 -dimensional, highly

sparsified, matrix of model parameters. Learning W involves solv-

ing a regularized logistic regression to correctly classify all training

point and label pairs:

min

W

1

2

∥W∥2𝐹 + 𝜆
𝑁∑
𝑖=1

𝐿∑
𝑙=1

log(1 + 𝑒−𝑦𝑖𝑙x
⊤
𝑖 Wz𝑙 ) (2)

s.t., ∥W𝑖∗∥0 ≤ 𝐾 ∀𝑖 ∈ {1, · · · ,𝐶}

where 𝐾, 𝜆 are hyper-parameters of the model and ∥W𝑖∗∥0 is the
number of non-zeros in the 𝑖th row of W. For ease of discussion,

the individual entries in W will be referred to as voters and the

non-zero entries among them as active voters.
In most text-based GZXML applications, 𝑁, 𝐿,𝐶, 𝐷 range in mil-

lions. The sparsity constraint is therefore enforced to ensure tractable

training and prediction. As each row in W has only a handful of

active voters (𝐾 ≈ 10), for a given x𝑖 , only 𝐶𝐾 number of label

features get triggered. By leveraging this property, ZestXML filters

off most of the irrelevant labels which are semantically unrelated

to the point during both training and prediction. Many existing

XML approaches perform such negative sampling by using data

structures based on hashing [42], trees [22, 45] or graphs [19] for

efficient label search. This paper demonstrates that model sparsity

can also be a powerful data structure for label search.

Model sparsity has been previously explored in the XML litera-

ture to selectively achieve efficient training [63, 64], better predic-

tion accuracy [61] or tractable model size [2]. In contrast, ZestXML

effectively leverages model sparsity to jointly attain all these desir-

able properties. Additionally, ZestXML’s predictions are explainable
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by tracking the voters which are responsible for each label’s pre-

diction. The rest of this section presents the ZestXML’s training

and prediction algorithms and their computational complexities.

3.2 Training
ZestXML training aims to solve (2) highly efficiently in order to scale

to millions of data points, labels and features while taking only a

few hours with modest computational resources. Towards this goal,

a new optimization approach named eXtreme Hard Thresholding

Pursuit is proposed.

Existing approaches: The objective (2) with 𝐿0 constraints is
non-convex and NP-hard which forbids any exact solutions which

are efficient too. Alternatively, several first order [36, 54] and sec-

ond order [9, 58] optimization methods have been proposed for

approximately solving such problems. The former utilize only the

gradient information for optimization whereas the latter methods

leverage both the gradient and the hessian. Regardless of their

nature, none of these techniques are able to scale to our setting

where both the number of instances (𝑁𝐿) and parameters (𝐶𝐷)

in (2) range in 𝑂 (1012). Note that exactly computing the gradient

for (2) requires a prohibitive 𝑂 (1016) operations even with model

sparsity. Moreover, materializing a full hessian or its inverse during

training needs terabytes of RAM and hence is expensive.

eXtreme Hard Thresholding Pursuit: XHTP is an extremely

efficient second order optimization algorithm which scales only

sublinearly with both the number of instances (𝑁𝐿) and parameters

(𝐶𝐷). In comparison, the existing second order solutions [9, 58]

have at least a linear and quadratic dependence respectively.

The objective (2) can be reformulated as

min

w

1

2

∥w∥2
2
+ 𝜆

𝑁𝐿∑
𝑗=1

log(1 + 𝑒−𝑏 𝑗w
⊤a𝑗 ) (3)

∥w𝑘 :𝑘+𝐷 ∥0 ≤ 𝐾 ∀𝐾 ∈ {1, · · · ,𝐶}

b ∈ {0, 1}𝑁𝐿, a𝑖 ∈ R𝐶𝐷 ,w ∈ R𝐶𝐷

wherew, b are flattenedW,Y; a𝑗 is flattened form of its correspond-

ing outer product matrix x𝑖z⊤𝑙 ; w𝑘 :𝑘+𝐷 is a sub-vector of w.

Similar to other second-order approaches, an iteration of XHTP

consists of 2 successive steps: approximation and refinement. The

first step approximates the objective in (2) by a quadratic form

and minimizes it to obtain a sparsified solution. The second step

uses the same obtained sparsity support but refines the values of

non-zero parameters to better fit the original objective. The second-

order methods are known to converge in only a small number of

iterations. By judiciously exploiting a few key assumptions and a

favourable starting point, XHTP manages to attain a highly sparsi-

fied and accurate model in just one iteration of approximation and

refinement steps which further improves its efficiency.

Since the solution to (3) is expected to be extremely sparse, a

meaningful starting point for optimization is w0 = 0.
Approximation step: This step computes the gradient g0 and

the inverse hessian H−1
0

of (3) at the initialized iterate w0. This is

followed by a newton descent step

w1 = w0 − H−1
0
g0 (4)

to obtain a new iterate w1. Finally, w1 is truncated to satisfy the

sparsity constraints in (3) by retaining only 𝐾 parameters with

largest magnitude in each sub-vector w𝑘 :𝑘+𝐷 . The resulting trun-
cated output of this approximation step is denoted by w𝑎 .

To tractably compute H−1
0
, the following assumption is made

about the underlying data

• Assumption: Each feature in x𝑖 and z𝑙 , and consequently in

a𝑗 , are generated independently of other features.

This is a probabilistic feature independence assumption which is

also used in techniques like Naive Bayes classifiers. It decouples the

features and thus reduces the computational burden from𝑂 ((𝐶𝐷)2)
to 𝑂 (𝐶𝐷). Now, let 𝑒+

𝑘
, 𝑒−
𝑘
be the expected values of the 𝑘th feature

over positive and negative instances respectively:

𝑒+
𝑘
=

∑
𝑗 :𝑏 𝑗=1 𝑎 𝑗𝑘

𝑁𝐿
𝑒−
𝑘
=

∑
𝑗 :𝑏 𝑗=−1 𝑎 𝑗𝑘
𝑁𝐿

(5)

The following theorem demonstrates the existence of a closed

form solution for (4)

Theorem 3.1. Given the feature independence assumption, the
value of w1 = −H−1

0
g0 takes the following form

𝑤
1𝑘 =

4𝑒+
𝑘

𝑒+
𝑘
+ 𝑒−

𝑘

(6)

Proof. Proof is available in supplementary material. □

The above simplification is possible due to the feature indepen-

dence assumption and the fact that hessian atw0 = 0 is independent
of the relevance scores (1).

The theorem suggests a simple hard thresholding scheme where

the dimensions corresponding to largest values of 𝑣 (𝑘) =
𝑒+
𝑘

𝑒+
𝑘
+𝑒−

𝑘

are retained. A useful interpretation of these 𝑣 (𝑘) values, for the
special case of binary features, is as

𝑣 (𝑘) = P(𝑏 𝑗 = 1|𝑎 𝑗𝑘 > 0) (7)

In other words, the approximation step retains only those voters

(𝑐, 𝑑) such that if 𝑥𝑖𝑐 > 0, 𝑧𝑙𝑑 > 0, then the label 𝑙 is relevant to

point 𝑖 with high probability.

Let w𝑎,W𝑎 denote, respectively, the parameter vector obtained

after thresholding and the reconstructed matrix form of the same.

The approximation step can be efficiently implemented as shown

in the pseudo-code in supplementary material. The computational

complexity of this step is𝑂 (𝑁𝐶�̂� log𝐿). On Wikipedia-1M dataset

with 𝑁 ≈ 1𝑀, log𝐿 ≈ 10,𝐶 ≈ 100, �̂� ≈ 10, the total computations

are ≈ 10
10

which is just a few minutes on a present-day CPU.

Refinement step: While the W𝑎 solution provided by the ap-

proximation step is itself reasonably accurate from a practical stand-

point (see Section 5), it can be further improved by taking a refine-

ment step. This step is necessary to rectify the errors caused due to

the quadratic approximation and the assumption of independently

generated features which does not strictly hold. This stage fixes

the voter sparsity pattern recovered inW𝑎 and only re-learns their

weights. For efficiency, it samples only a small number (𝑆 ≈ 100) of

most erroneous labels per training point through the ZestXML’s

efficient label shortlisting algorithm (discussed in next part) and

only optimizes on these difficult point-label pairs by minimizing

the original objective (2). Since the parameter matrix is sparse and

the training sample is small, this step can be highly efficient with a

training time of less than an hour on large datasets and complexity

https://nilesh2797.github.io/pubs/gupta21_supp.pdf
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𝑂 (𝑁𝑆�̂�) where �̂� is the average active feature pairs for an point-

label pair. Liblinear [13] library was used for this optimization. The

resulting refined parameter matrix is denoted asW𝑟 .

3.3 Prediction
During prediction, given a test point, the most relevant labels need

to be retrieved for it, i.e. labels with the highest relevance score (1).

Since both point and label features are sparse vectors, ZestXML

adopts an inverted index based search algorithm for prediction.

It begins by creating an inverted index where the keys are label

features and each label is indexed against its own set of features.

When a test point x arrives, its features are first projected onto

the label feature space by applying the learnt matrix W to get a

sparse embedding x̃ = W⊤x. Due to the sparsity pattern in x and

W, this takes𝑂 (𝐶𝐾) operations. Now, for each non-zero dimension

of x̃, its inverted index list is perused and the scores for the indexed
labels are aggregated. Finally, all resulting label scores are sorted

decreasingly to get top label predictions.

While it is desirable to directly use the refined parameter matrix

W𝑟 for the above projection operation, this has a major drawback.

Some of the inverted indices corresponding to popular label features

might be extremely long and contain too many irrelevant labels.

Therefore, although the point projection itself takes just 𝑂 (103)
operations, the overall prediction procedure can be inefficient. To

sidestep this problem, ZestXML uses a two-step prediction where

𝑆 ≈ 100 potentially relevant labels are first shortlisted by usingW𝑎

and then these labels are re-ranked by usingW𝑟 based scoring.

The above choice hinges on the observation that a provably

efficient shortlisting procedure exists forW𝑎 based scoring. This

is based on the interpretation in (7) that W𝑎 values measure the

voter precision in recovering relevant labels. As a result, high (low)

scoring inverted index lists contain few (many) indexed labels in

them. Therefore, we can safely ignore the low scoring, lengthy lists

without significantly changing the estimated label scores.

Theorem 3.2. Let x be a test point, 𝜎𝑥 , 𝜎𝑧 be the bounds over 𝐿1
norms of x, z respectively and 𝜖 be a small error tolerance parameter.
Further, let 𝑠∗ = max𝑙 x⊤W𝑎z𝑙 be the score of the top-ranked label
by approximate prediction. Then, an efficient algorithm exists which
instead uses W̃𝑎 obtained by truncating parameters smaller than 𝜖

and predicts, in time 𝑂 (𝐶�̂�𝐾 log𝐿
𝜖 ), a top-ranked label with score 𝑠

whose regret bounded by 𝑠∗ − 𝑠 ≤ 𝜎𝑥𝜎𝑧𝜖 .

Proof. Proof is available in supplementary material. □

The prediction time scales as 𝑂 (𝐶�̂�𝐾 log𝐿) as suggested by the

theorem. Since 𝑙𝑜𝑔𝐿 ≈ 10,𝐶 ≈ 100, �̂� ≈ 10, 𝐾 ≈ 10, prediction

requires around 10
5
computations per test instance which is a few

milliseconds, after discounting for 𝜖 , on modern CPUs.

This paper uses ZestXML-XHTP and ZestXML-tuned to refer to

predictions of label shortlisting and label re-ranking stages respec-

tively. The pseudo-code for label shortlisting algorithm is available

in supplementary material.

4 SPONSORED SEARCH ADVERTISING
This paper applies ZestXML to the task of Sponsored Search Ads

in Bing. This section briefly summarizes the application as well as

the use of ZestXML in it.

Sponsored SearchAdvertising: Sponsored Search Advertising
(SSA) fulfills users’ need for relevant search results and advertisers’

motive to direct traffic to their web pages and hence it is considered

to be amongst the most important sources of revenue for search

engines. The ads are retrieved from a dynamic corpus provided

by large number of advertisers and shown alongside the organic

search results. This corpus usually consists of advertiser hyperlinks

which are annotated with keyword tags, titles, and descriptions. The

advertiser provides bids on specified keywords that are valuable to

capture traffic. Building efficient retrieval models is thus needed to

fetch relevant advertisements/documents for user queries.

Feature-based SSA: Traditionally, ad retrieval in SSA involved

directly matching a user query to an advertiser provided bid phrase.

Recently, however, a query feature-based matching approach is

being increasingly adopted where ads are indexed in an inverted

index against the relevant query features as keys. At serving time, a

user query is featurized and then searched in the inverted index to

retrieve the relevant ad candidates. Inverted index is traditionally

created for TF-IDF matching where the ad documents are collected,

linguistic pre-processing is performed for featurization and each

ad is indexed against its own features. This feature-based matching

finds its relevance in especially showing documents/ads for rare

or completely unseen queries since the disintegration of queries

to features can lead to a good recall. This paper proposes to im-

prove the inverted index creation by directly learning the most

informative ad feature to query feature mappings corresponding to

the non-zeros in the learnt sparse parameter matrix. Furthermore,

during inverted index search, the associated novel prediction algo-

rithm can be applied instead of traditional TF-IDF search resulting

in more accurate and efficient retrieval. The inverted index based

retrieval has several advantages over the low-dimensional dense

embeddings where retrieval involves doing an ANNS (Approximate

nearest neighbor search) with an expensive search data structure

as discussed in section 2

XC in Ad retrieval: The ZestXML model is a natural fit for

feature-based SSA and its generalized zero-shot learning abilities

can help procure relevant ads for unseen queries. To deploy this

in an online system of ads, the historical click logs are mined to

collect ads documents and queries for which they have received a

click. A search query is tagged to be relevant to an ad if there have

been at least 2 historical clicks. Feature vectors of ads are created by

extracting TF-IDF bag-of-words representation from the ad landing

pages provided by advertisers. Feature vectors of queries are also

created similarly as a TF-IDF bag-of-words vector. The features

contain unigrams as well as bigrams occurring at least twice in the

data. ZestXML is learned on the training data and an inverted ad-

index is built over its learnt instance-label feature pairs. For every

ad, the ZestXML’s recommended query features are inserted into

an inverted ad index and will be retrieved when the corresponding

feature is matched to a query being entered in the search engine.

https://nilesh2797.github.io/pubs/gupta21_supp.pdf
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Table 1: Dataset Statistics.

Dataset Num points Num features Num labels
Train Test Point Label Seen Unseen

EURLex-4.3K 45,000 6,000 100,000 24316 4,108 163

Amazon-1M 914,179 1,465,767 1,000,000 1,476,381 476,381 483,725

Wikipedia-1M 2,271,533 2,705,425 2,000,000 1,438,196 495,107 776,612

Ads-31M 6,989,516 4,512,480 2,813,614 3,254,839 21,950,748 9,525,826

Figure 2: Number of parameters vs frequency of label

ZestXML’s scoring function is an effective alternative to naive TF-

IDF or BM25 scoring and can help improve the efficacy of retrieval.

5 EXPERIMENTS
5.1 Experiment Settings
Datasets and features: Experiments were carried out on large-

scale datasets with up to 7 million training points and 31 million

labels comprising both seen and unseen (i.e. zero-shot) labels (see
Table 1 for dataset statistics). The applications considered include

document tagging where a web-page is assigned with descriptive

tags (EURLex-4.3K [7],Wikipedia-1M), item-to-item recommenda-

tion on Amazon where a product is recommended its frequently

co-purchased products (Amazon-1M), and advertising where an

ad landing page is assigned with its relevant search queries to be

shown against (Ads-31M). The following procedure is used for gen-

erating all datasets: The training and test data were generated to

belong to two successive non-overlapping time periods to mimic

zero-shot learning in real applications. A 5% of test data was kept

aside for hyper-parameter tuning. Most baseline approaches use

the same bag-of-ngrams (𝑛 ≤ 2) TF-IDF feature representation for

both data points and labels. All datasets, apart from the proprietary

Ads-31M, will be publically released.

Baseline algorithms: ZestXML was compared against leading

algorithms from following 4 classes of methods :

(1) State of the art extreme classifiers such as AttentionXML[66],

Astec[11], DiSMEC[2], Parabel[45] and Bonsai[26]

(2) Extreme classifiers which improve performance on few-shot

labels such as DECAF[40], XReg[46] and PFastreXML[20]

(3) Dense retrieval methods based on the state of the art natu-

ral language modelling architectures such as Sentence BERT

bi-encoder[48], Fasttext[24] and WarpLDA (topic model)[10],

these algorithms provide strong scalable baseline to compare

ZestXML’s performance over zero-shot and few-shot labels

(4) Leading zero-shot multi-label learners such as 0-BIGRU-WLAN,

0-CNN-LWAN[50] and CoNSE [43], these baselines don’t scale

on extreme datasets, hence, ZestXML’s comparison against

these baselines is reported only for EURLex-4.3K in Table 5.

The implementation of all the aforementioned algorithms were

provided by their authors. The hyper-parameters of all baseline

algorithms were set as suggested by their authors wherever ap-

plicable and by fine grained validation otherwise. The prediction

for the Topic Model was performed using a scalable, map-reduce

based implementation of Blei inference [5]. Blei inference was used

because it gave better results on our datasets. All baselines have

been run on only on those datasets on which it trains within a week

and predicts within few days. ANNS on dense embeddings has been

carried out using HNSW[35] for Sentence BERT and Fasttext.

Evaluation metrics: Prediction accuracies are primarily mea-

sured using widely used propensity-scored precision@𝐾 (PSP) eval-

uation metric. Propensity scores for zero-shot labels are extrapo-

lated according to standard propensity-score formula [20].

Table 2 reports PSP@1, 3, 5 metrics for Generalized ZSL task

on ZestXML and baselines. The section ?? provides evaluation

numbers for all datasets and baseline with respect to standard

precision@𝐾(P) as well. For a predicted score vector ŷ ∈ 𝑅𝐿 and

ground truth vector y ∈ {0, 1}𝐿 , 𝑃@𝑘 = 1

𝑘

∑
𝑙 ∈𝑟𝑎𝑛𝑘𝑘 (ŷ)𝑦𝑙 , 𝑃𝑆𝑃@𝑘 =

1

𝑘

∑
𝑙 ∈𝑟𝑎𝑛𝑘𝑘 (ŷ)

𝑦𝑙
𝑝𝑙
. Here, 𝑝𝑙 is propensity score of the label 𝑙 proposed

in [20].

Hyper parameters: ZestXML uses three tunable hyper param-

eters : (1) Model sparsity 𝐾 (2) shortlist size 𝑆 (3) common reg-

ularization parameters for ZestXML-tuned optimization 𝜆. 𝜆 = 1

was found to work consistently well for all datasets. 𝑆 impact the

recall values of the shortlist which dictates the overall quality of

label shortlist generated for ZestXML-tuned and therefore should

be maximized for good overall performance. As demonstrated in

figure 4, with larger 𝑆 recall continues to improve but by smaller

amounts. A shortlist size of 𝑆 = 100 seemed adequate for all the

datasets without incurring too much prediction cost. 𝐾 dictates

the number of learnable parameters in the model and can impact

the final performance of the model. Figure 4 plots the variation in

final PSP@5 with variation in 𝐾 , we observe that with increasing

𝐾 model performance improves but with diminishing gains. We

choose 𝐾 between 10 to 40 for all datasets.

Hardware: Training and prediction for all CPU based methods

were done on a 110 GB RAM intel Xeon processor machine. All

GPU based baselines were run on 4 NVIDIA TESLA P100 GPUs.

Figure 3 reports training and test times normalized for single core

for CPU based methods and single GPU for GPU based methods.

5.2 Results
Results on EURLex-4.3K: ZestXML is among the best performing

methods on EURLex dataset in terms of PSP@5, although on PSP@1

traditional extreme classifiers are better than ZestXML. Note that,

on EURLex all of the baselines which rely on label features to make

predictions(DECAF, Bert-ANNS, Fasttext-ANNS) perform poorly

as compared to traditional extreme classifiers. This is primarily

because label features on EURLex are not very informative and

many times lead to noise in predictions. The smaller EURLex dataset

allows comparison to standard zero-shot multi-label learners(Zero-

BIGRU-LWAN, Zero-CNN-LWAN, ConSE) which don’t scale to



Figure 3: ZestXML learns most compact model on both Wikipedia-1M and Amazon-1M datasets and is comparable to most
scalable extreme classification methods w.r.t training/prediction time (* marked methods were run on GPU)

Table 2: ZestXML achieves the highest or close to the highest PSP for Generalized Zero-Shot(G.ZSL) task among other XML
and dense ANNS baselines on all datasets

Algorithm G.ZSL

PSP@1 PSP@3 PSP@5

EURLex-4.3K

ZestXML-tuned 48.01 60.29 66.15

ZestXML-XHTP 36.32 40.05 42.9

AttentionXML 53.92 63.59 67.85
Astec 50.32 59.14 63.00

Decaf 40.68 46.96 49.89

Parabel 46.82 58.8 64.29

DiSMEC 47.26 59.82 65.55

Bonsai 46.41 58.83 64.44

XReg 58.06 62.99 65.97

PfastreXML 55.30 58.00 59.91

FastText ANNS 17.10 15.74 16.13

Bert ANNS 4.64 3.66 3.57

Topic Model 6.85 6.14 6.13

Algorithm G.ZSL

PSP@1 PSP@3 PSP@5

Amazon-1M

ZestXML-tuned 21.58 30.62 36.79
ZestXML-XHTP 18.56 26.94 33.39

AttentionXML 10.18 13.76 15.91

Astec 10.32 13.97 16.44

Decaf 11.91 16.26 19.09

Parabel 9.06 12.38 14.29

DiSMEC 10.46 14.57 17.13

Bonsai 9.88 13.68 15.93

XReg 9.87 13.25 15.48

PfastreXML 7.76 10.39 12.14

FastText ANNS 16.80 20.63 23.64

Bert ANNS 22.97 29.69 34.95

Topic Model 1.98 1.96 1.95

Algorithm G.ZSL

PSP@1 PSP@3 PSP@5

Wikipedia-1M

ZestXML-tuned 14.43 15.80 17.31
ZestXML-XHTP 1.5 2.54 3.68

AttentionXML 3.82 4.54 5.20

Astec 2.66 2.74 2.99

Decaf 3.48 3.97 4.48

Parabel 2.99 3.32 3.65

DiSMEC 2.35 2.99 3.48

Bonsai 3.19 3.61 4.05

XReg 3.48 3.51 3.83

PfastreXML 2.97 2.90 3.10

FastText ANNS 7.16 6.01 6.19

Bert ANNS 10.34 8.17 8.20

Topic Model 1.88 1.93 2.19

Table 3: Comparing the shortlisting performance of
ZestXML XHTP with popular IR samplers TF-IDF, BM25

Sampler Recall@10 Recall@50 Recall@100

ZestXML-XHTP 39.77 54.61 60.05

TF-IDF 31.08 44.70 50.65

BM25 33.62 46.61 52.25

larger datasets. ZestXML achieves the best accuracies on both seen

and unseen labels when compared to such methods (see Table 5).

Results on large datasets: On large datasets, Table 2 demon-

strates that ZestXML outperforms most of the leading extreme

classifiers, dense embedding based ANNS approaches and topic

model on the GZXML task. ZestXML consistently outperforms

dense ANNS by at most 10% and can be upto 16% better than ex-

treme classifiers at PSP@5. In terms of P@5, ZestXML is the best

performing method on Amazon-1M and Ads-31M by a margin of

2.5% and 11% respectively and is second to only AttentionXML on

Wikipedia-1M where seen labels play a significant role in predic-

tions. However, AttentionXML is around 50x slower to train and

has 10x larger model size than ZestXML beside requiring expensive

GPUs for training and prediction. To summarize, ZestXML con-

sistently outperforms most baselines in diverse recommendation

scenarios whereas all the existing baselines fail significantly in one

or the other scenarios.

Complexity: ZestXML learns a more compact models across

all datasets than existing extreme classification methods as demon-

strated in Figure 3. Moreover, ZestXML is highly scalable even on

a single thread of a standard desktop due to efficient training and

its prediction time is consistently about a few milliseconds across

datasets. On the largest dataset with 31 million labels (Ads-31M),

ZestXML trains in just 30 hours on single core and predicts in ∼20
ms latency which is desirable for practical use.

ZestXML is also capable of carefully allotting its voters or model

parameters as per the needs of different labels. As seen from Figure 2,

more voters are alloted to popular labels which have more data

to learn from. At the same time, ZestXML shares many voters for

predicting tail labels accurately through data pooling while also

reserving voters for personalization in head labels. In contrast,

existing XML approaches attempt to personalize models for all

labels and hence suffer on tail labels.

Performance on rare labels: ZestXML performs better than all

baselines on rare labels as shown in Figure 5, which plots PSP@5

of different methods in zero-shot and few-shot label regime on

Amazon-1M dataset. Existing extreme classification baselines make

no predictions for zero-shot labels and perform poorly on few-shot



Figure 4: Hyperparameter ablation

Figure 5: ZestXML consistently outperforms the baselines
across both zero shot and few shot labels on Amazon-1M

labels since not much training data is available for such labels,

although recently proposed DECAF algorithm (which utilises a

combination of per-label classifier and label text embedding) per-

forms on par with ZestXML on few-shot labels. BERT and Fasttext

embedding based ANNS approaches perform reasonably well on

zero-shot labels but ZestXML significantly outperforms them on

few-shot labels.

Sampler choice: Table 3 shows the superior shortlisting perfor-
mance of ZestXML-XHTP as compared to popular IR based text-

matchers like TF-IDF and BM25 on Amazon-1M dataset. ZestXML-

XHTP is better by an absolute margin of 10% and 8% than TF-IDF

and BM25 respectively on Recall@10, 50, 100. This demonstrates

that ZestXML-XHTP brings many useful cross features which TF-

IDF and BM25 fail to capture.

Application to computational advertising: To test the effi-

cacy of the ZestXML in uncovering missing recall, we deployed

it in a system consisting of ensemble of algorithms ranging from

neural information retrieval, graph and IR based techniques. We

performed online A/B testing on Bing sponsored search engine in

order to evaluate the results. One of the fundamental objective is

to maximize the ad clicks generated, hence we evaluate the metric

click-yield (CY) for the algorithm, which can be defined as the num-

ber of clicks per 1000 queries searched. The deployment of ZestXML

led to significant gains and helped in boosting the contribution of

CY of IR based system by 17%. The algorithm also helped expanding

the coverage to completely unseen queries by a factor of 3.4%.

Qualitative results: ZestXML also provides useful explanations

to its label predictions based on the most contributing voters. In

product recommendation applications, where explainable predic-

tions are useful, this can be leveraged. The figure in supplemen-

tary materialpresents the top item recommendations by ZestXML

Table 4: Comparison of ZestXML with other dense ANNS
and XML algorithms on proprietary Bing Ads-31M dataset

Algorithm G.ZSL

PSP@1 PSP@3 PSP@5

Ads-31M

ZestXML-tuned 15.22 20.24 22.01
ZestXML-XHTP 9.97 15.97 18.89

Parabel 2.16 3.09 3.53

Xreg 2.89 3.96 4.43

FastText ANNS 4.78 6.94 8.16

Bert ANNS 6.79 9.57 11.15

Topic Model 1.41 2.23 2.87

Table 5: Comparison of ZestXML with zero-shot multi label
algorithms on EURLex-4.3K

Algorithm P@5

Seen+Unseen Unseen

EURLex-4.3K

ZestXML-tuned 69.5 12.81

ConSE-FastText 34.71 4.27

0-BIGRU-LWAN 61.90 9.30

0-CNN-LWAN 58.90 6.90

on Amazon for a few test points and also shows the top voters

(instance-label feature pairs) responsible for these predictions. The

green ticks indicate that the predictions are relevant to the user

as judged by user clicks. Examples of the useful explanations that

ZestXML generate include (1) predicting book recommendations by

the same author that user is viewing (Jordan Rubin); (2) predicting

books on same topic that the user is viewing (carpentry).

6 CONCLUSION
This paper studied the problem of zero-shot labels in extreme clas-

sification and developed a novel ZestXML classifier capable of gen-

eralized zero-shot predictions. ZestXML scalably learns a highly

sparsified linear transform between the data point’s and label’s

features through an innovative optimization technique. ZestXML

can be up to 14% and 10% more accurate at generalized zero-shot

learning relative to leading extreme classifiers and dense embed-

ding search approaches. Deploying ZestXML in Sponsored Search

Advertising on Bing improved the click yield and unseen query

coverage by 17% and 3.4% respectively. ZestXML’s source code and

benchmark datasets for zero-shot extreme classification will be

released for research purposes.
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