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1 APPENDIX
Theorem 1.1. Given the feature independence assumption, the

value of w1 = −H−10 g0 takes the following form where 𝜖, 𝛿 are small
constants:
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Proof. The objective we wish to minimize is replicated here:

min
w
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log(1 + 𝑒−𝑏 𝑗w
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∥w𝑘 :𝑘+𝐷 ∥0 ≤ 𝐾 ∀𝐾 ∈ {1, · · · ,𝐶}

b ∈ {−1, 1}𝑁𝐿, a𝑖 ∈ R𝐶𝐷 ,w ∈ R𝐶𝐷

wherew, b are flattenedW,Y; a𝑗 is flattened form of its correspond-
ing outer product matrix x𝑖z⊤𝑙 ; w𝑘 :𝑘+𝐷 is a sub-vector of w.

At any general w, the gradient and hessian for (2) take the fol-
lowing forms, where A is the feature matrix with column 𝑗 being
a𝑗 and D is a diagonal matrix with 𝐷𝑘𝑘 = 1

1+𝑒−𝑏𝑗w⊤a𝑗

g = 𝜆ADb (3)
H = I + 𝜆AD(I − D)A⊤ (4)

However, at w0 = 0, the above expressions can be simplified as:

g0 =
𝜆

2Ab (5)

H0 = I + 𝜆4AA
⊤ (6)

To further simplify the hessian computation, we assume that the
features are generated from independent probability distributions
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with the expectations E[𝑎 𝑗𝑘 ] = 𝑒𝑘 =

∑
𝑗 𝑎 𝑗𝑘
𝑁𝐿

. Then, the gradient
and average hessian turn out to be
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,e+ + e− = e, and E is a
diagonal matrix with 𝐸𝑘𝑘 = 𝑒𝑘 .

Now, with F a diagonal matrix with 𝐹𝑘𝑘 = 4𝐼
𝜆𝑁𝐿
+ 𝐸𝑘𝑘 (1 − 𝐸𝑘𝑘 ),

the next iterate can be simplified as
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where the last step is based on Sherman-Morrison Lemma.
Now, we make another simplifying assumption that the features

which occur in very few or many points are uninformative and are
hence filtered off. Consequently, 1

𝑁𝐿
≪ 𝑒𝑘 ≤ 1, thus leading to
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. □

Theorem 1.2. Let x be a test point, 𝜎𝑥 , 𝜎𝑧 be the bounds over 𝐿1
norms of x, z respectively and 𝜖 be a small error tolerance parameter.
Further, let 𝑠∗ = max𝑙 x⊤W𝑎z𝑙 be the score of the top-ranked label
by approximate prediction. Then, an efficient algorithm exists which
instead uses W̃𝑎 obtained by truncating parameters smaller than 𝜖

and predicts, in time 𝑂 (𝐶�̂�𝐾 log𝐿
𝜖 ), a top-ranked label with score 𝑠

whose regret bounded by 𝑠∗ − 𝑠 ≤ 𝜎𝑥𝜎𝑧𝜖 .

Proof. Let x ∈ R𝐶 , z ∈ R𝐷 be a test point and a label re-
spectively. The objective of this theorem is to efficiently compute
x⊤W𝑎z in an approximate manner. To achieve this, we begin by
first projecting x into the label feature space as x̂ = 𝑊 ⊤x ∈ R𝐷 .
Let’s make the standard assumption that both point feature vectors
and label feature vectors are highly sparse with maximum sparsity
𝐶, �̂� respectively. In such a case, the cost of projecting the test point
is 𝐶𝐾 where 𝐾 is the sparsity in𝑊 .

Now, prediction involves outputting the labels 𝑙 ∈ {1, · · · , 𝐿}
with maximum x⊤𝑊 z𝑙 = x̂⊤z𝑙 score. A naive way for this is to
iterate through each feature of z𝑙 for every label 𝑙 to compute
x̂⊤z𝑙 with total complexity 𝐶𝐾 + �̂�𝐿 which is huge since 𝐿 can
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(a) Amazon: The Maker’s Diet ForWeight Loss: 16-week strategy for
burning fat, cleansing toxins, and living a healthier life

(b) Amazon: KWAM1911 MKIV PTP Blowback Airsoft Pistol airsoft
gun

(c) Amazon: Traxxas 6407 1/7 X0-1 100+MPH 4WDReady-to-Run Su-
percar

(d) Amazon: Finish Carpentry and Trimwork: Tools, Tips, Tech-
niques, and Projects (Wood Magazine)

Figure 1: Item recommendations by ZestXML on Amazon-2M: In each figure, first table highlights the top predictions of
ZestXML and the second table provides the top active point-label feature pairs. See text for more details. Figure best viewed
under high magnification.

Table 1: Comparison of ZestXML with other ZSL and XML algorithms

Algorithm G.ZSL
P@1 P@3 P@5

EURLex-4.3K
ZestXML-tuned 91.42 82.36 69.5
ZestXML-OMP 71.50 57.61 47.85

AttentionXML 93.61 83.42 69.99
Astec 91.12 80.12 66.26
Decaf 81.35 68.61 56.6
Parabel 90.81 81.35 68.64
DiSMEC 91.46 82.32 69.31
Bonsai 91.53 82.08 69.13
XReg 86.83 78.08 66.97
PfastreXML 83.05 72.21 61.14

FastText ANNS 31.82 21.29 17.27
Bert ANNS 10.50 5.89 4.40
Topic Model 14.43 9.32 7.19

Algorithm G.ZSL
P@1 P@3 P@5

Amazon-1M
ZestXML-tuned 24.13 15.02 10.78
ZestXML-OMP 20.27 12.88 9.47

AttentionXML 19.07 10.98 7.45
Astec 18.43 10.81 7.46
Decaf 20.01 11.72 8.08
Parabel 17.78 10.21 6.89
DiSMEC 19.34 11.23 7.7
Bonsai 18.99 10.98 7.47
XReg 17.36 10.5 7.24
PfastreXML 14.46 8.7 6

FastText ANNS 13.92 7.83 5.45
Bert ANNS 19.27 11.42 8.16
Topic Model 2.04 1.85 1.70

Algorithm G.ZSL
P@1 P@3 P@5

Wikipedia-1M
ZestXML-tuned 30.63 22.20 17.22
ZestXML-OMP 13.25 8.76 7.20

AttentionXML 34.11 24.72 18.98
Astec 20.70 13.60 10.31
Decaf 28.27 19.75 15.24
Parabel 28.07 19.4 14.56
DiSMEC 24.10 17.59 13.75
Bonsai 29.15 20.49 15.65
XReg 24.69 17.69 13.92
PfastreXML 23.55 15.34 11.47

FastText ANNS 8.59 4.95 3.68
Bert ANNS 11.03 5.91 4.25
Topic Model 2.30 1.60 1.30

be in millions. This calls for a faster but approximate approach to
prediction.

Let W̃𝑎 be a sparsifiedW𝑎 after settings its parameters which are
smaller than 𝜖 to 0. Now it is easy to see that, x⊤W𝑎z − x⊤W̃𝑎z ≤

𝜎𝑥𝜎𝑧𝜖 . The projection x⊤W̃𝑎 costs at most 𝑂 (𝐶𝐾) non-zeros. Fur-
ther, due to the form of w1 in Theorem 1.1, each non-zero maps
onto at most log𝐿

𝜖 labels. Therefore, the total time complexity is



Table 2: Comparison of ZestXML with other ZSL and XML
algorithms on proprietary Bing Ads-31M dataset

Algorithm G.ZSL
P@1 P@3 P@5

Ads-31M
ZestXML-tuned 15.45 9.70 7.12
ZestXML-XOMP 10.23 7.71 6.14

Parabel 3.66 2.40 1.83
Xreg 3.13 2.04 1.55

FastText ANNS 4.75 3.28 2.61
Bert ANNS 6.75 4.58 3.62
Topic Model 1.33 1.00 0.87

Algorithm 1 Extreme Hard Thresholding Pursuit

input:
Training point feature matrix X ∈ R𝐶 × R𝑁
Label feature matrix Z ∈ R𝐷 × R𝐿
Ground truth relevance matrix Y ∈ R𝐿 × R𝑁
Model sparsity 𝐾 ∈ N

output:
Sparsified parameter matrix W𝑎 ∈ R𝐶 × R𝐷

procedure Extreme Hard Thresholding Pursuit
sumX← row_sum(X) #𝑂 (𝑁𝐶) sparse sum of each column

sumZ← row_sum(Z) #𝑂 (𝐿�̂�) sparse sum of each column

# sumX, sumZ are column vectors

Xt← X⊤

ZtY← Z⊤ ∗ Y #𝑂 (𝑁�̂� log𝐿) matrix product

for 𝑐 ∈ {1, · · · ,𝐶} do
n← ZtY ∗ Xt[:, 𝑐]
d← 𝑠𝑢𝑚𝑋 [𝑐] ∗ sumZ
p← n./d # elementwise division

p← truncate(p, 𝐾) # retain only highest 𝐾 values in p

W𝑎 [:, 𝑐] = p

Algorithm 2 ZestXML Label Shortlister

input:
Test point x ∈ R𝐶
Label feature matrix Z ∈ R𝐷 × R𝐿
Approximate parameter matrix W𝑎 ∈ R𝐶 × R𝐷
Error tolerance 𝜖 ∈ R

output:
Relevance scores s̃ ∈ R𝐿

procedure ZestXML Label Shortlister
W̃𝑎 ← 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (W𝑎, 𝜖) # retain only those values ≥ 𝜖
x̂← W̃⊤𝑎 x
s̃← Zx̂ # labels with +ve scores are shortlisted

bounded by 𝑂 (𝐶�̂�𝐾 log𝐿
𝜖 ) which includes the cost of projecting

the test point and then iterating over labels indexed against each
non-zero projection feature. □
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