Supplementary: Generalized Zero-Shot Extreme Multi-label
Learning

ACM Reference Format:

.2021. Supplementary: Generalized Zero-Shot Extreme Multi-label Learning.
In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD °21), August 14-18, 2021, Virtual Event, Singapore.
ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3447548.3467426

1 APPENDIX

THEOREM 1.1. Given the feature independence assumption, the
value of wi = —Ho_lgo takes the following form where €, are small
constants:
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where € = NI ¢ = N

Proor. The objective we wish to minimize is replicated here:
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where w, b are flattened W, Y; a; is flattened form of its correspond-
ing outer product matrix xiz;'—; W.k+D 1S a sub-vector of w.
At any general w, the gradient and hessian for (2) take the fol-
lowing forms, where A is the feature matrix with column j being

aj and D is a diagonal matrix with Dy = W

g = AADb (3)
H=1+AAD(I-D)AT 4

However, at wo = 0, the above expressions can be simplified as:
B0 = S Ab ©)

Ho=1+ %AAT (6)

To further simplify the hessian computation, we assume that the
features are generated from independent probability distributions
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with the expectations E[ajr] = e = % Then, the gradient

and average hessian turn out to be
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g0 = T(e ) (7)
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Ho=1+ T(E(I —E)+ee') (8)
by by
where, el*c' = #, e = #,e*’ +e =e,andEisa

diagonal matrix with Epp = eg.
Now, with F a diagonal matrix with Fg; = ﬁ + Epi (1 = Exp),
the next iterate can be simplified as
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where the last step is based on Sherman-Morrison Lemma.

Now, we make another simplifying assumption that the features
which occur in very few or many points are uninformative and are
hence filtered off. Consequently, ﬁ < ej < 1, thus leading to
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where last step observes that > ez < 2k € since the count of

positive and negative instances are respectively N log L and NL.
+
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Consequently, wy = +£=. m]
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THEOREM 1.2. Let x be a test point, oy, o, be the bounds over L1
norms of x, z respectively and € be a small error tolerance parameter.
Further, let s* = max; x' Wz; be the score of the top-ranked label
by approximate prediction. Then, an efficient algorithm exists which
instead uses W, obtained by truncating parameters smaller than e
and predicts, in time O(CDKTIOgL), a top-ranked label with score §
whose regret bounded by s* — § < ox0,€ .

ProOF. Let x € RC,Z € RD be a test point and a label re-
spectively. The objective of this theorem is to efficiently compute
x' W,z in an approximate manner. To achieve this, we begin by
first projecting x into the label feature space as x = W x € RP.
Let’s make the standard assumption that both point feature vectors
and label feature vectors are highly sparse with maximum sparsity
¢,D respectively. In such a case, the cost of projecting the test point
is CK where K is the sparsity in W.

Now, prediction involves outputting the labels I € {1,---,L}
with maximum x' Wz; = X'z score. A naive way for this is to
iterate through each feature of z; for every label I to compute
%"z, with total complexity CK + DL which is huge since L can
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Figure 1: Item recommendations by ZestXML on Amazon-2M: In each figure, first table highlights the top predictions of
ZestXML and the second table provides the top active point-label feature pairs. See text for more details. Figure best viewed
under high magnification.

Table 1: Comparison of ZestXML with other ZSL and XML algorithms

. G.ZSL . G.ZSL . G.ZSL
Algorithm P@1 P@3 P@5 Algorithm P@1 P@3 P@5 Algorithm P@1 P@3 P@5
EURLex-4.3K Amazon-1M Wikipedia-1M
ZestXML-tuned | 91.42 8236  69.5 ZestXML-tuned | 24.13 15.02 10.78 ZestXML-tuned | 30.63 22.20 17.22
ZestXML-OMP 7150 57.61 47.85 ZestXML-OMP 20.27 12.88 9.47 ZestXML-OMP 13.25 8.76 7.20
AttentionXML 93.61 8342 69.99 AttentionXML 19.07 10.98 7.45 AttentionXML 34.11 24.72 18.98
Astec 91.12 80.12 66.26 Astec 18.43  10.81 7.46 Astec 20.70  13.60 10.31
Decaf 81.35 68.61 56.6 Decaf 20.01 11.72  8.08 Decaf 2827 19.75 15.24
Parabel 90.81 81.35 68.64 Parabel 17.78 1021  6.89 Parabel 28.07 194  14.56
DiSMEC 91.46 8232 69.31 DiSMEC 19.34 11.23 7.7 DiSMEC 24.10 17.59 13.75
Bonsai 91.53 82.08 69.13 Bonsai 1899 10.98 7.47 Bonsai 29.15 2049 15.65
XReg 86.83 78.08 66.97 XReg 17.36 10.5 7.24 XReg 24.69 17.69 13.92
PfastreXML 83.05 72.21 61.14 PfastreXML 14.46 8.7 6 PfastreXML 23.55 1534 1147
FastText ANNS 31.82 21.29 17.27 FastText ANNS 13.92 7.83 5.45 FastText ANNS 8.59 4.95 3.68
Bert ANNS 10.50 5.89 4.40 Bert ANNS 19.27 1142 8.16 Bert ANNS 11.03 5.91 4.25
Topic Model 1443 9.32 7.19 Topic Model 2.04 1.85 1.70 Topic Model 2.30 1.60 1.30

be in millions. This calls for a faster but approximate approach to

prediction.

Let W, be a sparsified W, after settings its parameters which are
smaller than € to 0. Now it is easy to see that, x' W,z — x' W,z <

ox0z€. The projection xTWa costs at most O(C'K) non-zeros. Fur-
ther, due to the form of wy in Theorem 1.1, each non-zero maps

onto at most log L

labels. Therefore, the total time complexity is



Table 2: Comparison of ZestXML with other ZSL and XML
algorithms on proprietary Bing Ads-31M dataset

G.ZSL
P@1 P@3 P@5
Ads-31M

ZestXML-tuned | 1545 9.70 7.12
ZestXML-XOMP | 10.23 7.71 6.14

Algorithm

Parabel 3.66 2.40 1.83
Xreg 3.13 2.04 1.55
FastText ANNS 4.75 3.28 2.61
Bert ANNS 6.75 4.58 3.62
Topic Model 1.33 1.00  0.87

Algorithm 1 Extreme Hard Thresholding Pursuit

input:
Training point feature matrix X € RE xRN
Label feature matrix Z € RP xR

Ground truth relevance matrix Y € RL x RN
Model sparsity KeN
output:
Sparsified parameter matrix W, € R¢ xRP
procedure EXTREME HARD THRESHOLDING PURSUIT
sumX « row_sum(X)
sumZ <« row_sum(Z)

# O(NC) sparse sum of each column
#O(LD) sparse sum of each column
# sumX, sumZ are column vectors

Xt — XT
ZtY — Z7 Y # O(NDlog L) matrix product
force{1,---,C} do

n « ZtY = Xt[: c]

d « sumX|[c] * sumZ

P < l'l/d # elementwise division
p < truncate(p, K) # retain only highest K values in p
Wqlicl=p

Algorithm 2 ZestXML Label Shortlister

input:
Test point x € RC
Label feature matrix Z e RP xRL

Approximate parameter matrix W, € RC x RP

Error tolerance eeR
output:
Relevance scores seRL

procedure ZESTXML LABEL SHORTLISTER
W, « threshold(Wg, €)
X Wlx
S —7Zx

# retain only those values > €

# labels with +ve scores are shortlisted

bounded by O(CDKTIOgL) which includes the cost of projecting
the test point and then iterating over labels indexed against each

non-zero projection feature. m]
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